Folia Geobotanica

, Volume 48, Issue 4, pp 449–466 | Cite as

Can We Distinguish Plant Species that are Rare and Endangered from Other Plants Using Their Biological Traits?

  • Jarmila Gabrielová
  • Zuzana Münzbergová
  • Oliver Tackenberg
  • Jindřich Chrtek
Article

Abstract

Understanding the factors responsible for species rarity is crucial for effective species conservation. One possible approach to obtaining information about causes of species rarity is to compare rare and common species. We analyzed the biological and ecological traits of critically endangered (CR) plant species of the Czech Republic. We compared the vegetative, generative and ecological traits of CR species with: i) common closely related species (a form of phylogenetic correction), ii) common closely related species sharing the same habitat (i.e., excluding pairs not sharing the same habitat, because many differences in species traits can be caused by adaptation to a specific habitat type) and iii) all plants of the Czech Republic. Information about species traits was mainly obtained from literature and databases. Comparison with common closely related species showed that CR species are smaller, flower for shorter periods, and have higher proportions of self-compatibility and higher terminal velocities. CR species also differ in their mode of dispersion, and their ecology and distribution. Comparison with species from the same habitat gave similar results. Comparison with the whole flora produced slightly different results, with additional differences in pollination mode and seed mass. The results of all three types of comparison suggest that critically endangered species of the Czech Republic are small, competitively inferior species, with some differences in the generative part of their life cycle, and occur mainly in open, unproductive habitats.

Keywords

Central Europe Life-history traits Phylogenetically independent contrasts Red List Threatened species 

Abbreviations

CR

critically endangered vascular plant species of the Czech Republic

IUCN

International Union for Conservation of Nature

Plant nomenclature

Kubát et al. (2002) 

Supplementary material

12224_2012_9145_MOESM1_ESM.pdf (168 kb)
ESM 1(PDF 167 kb)

References

  1. Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–348CrossRefGoogle Scholar
  2. Bakker JP, Berendse F (1999) Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol Evol 14:63–68PubMedCrossRefGoogle Scholar
  3. Banks JA (1980) The reproductive biology of Erythronium propullans Gray and sympatric populations of E. albidum Nutt. (Liliaceae). Bull Torrey Bot Club 107:181–188CrossRefGoogle Scholar
  4. Barrett SCH (1996) The reproductive biology and genetics of island plants. Philos Trans, Ser B 351:725–733CrossRefGoogle Scholar
  5. Bevill RL, Louda SM (1999) Comparisons of related rare and common species in the study of plant rarity. Conservation Biol 13:493–498CrossRefGoogle Scholar
  6. Bonn S, Poschlod P, Tackenberg O (2000) Diasporus – a database for diaspore dispersal-concept and applications in case studies for risk assessment. Z Ökol Umweltschutz 9:85–97Google Scholar
  7. Busch JW (2005) The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae). Amer J Bot 92:1503–1512CrossRefGoogle Scholar
  8. Byers DL, Meagher TR (1997) A comparison of demographic characteristics in a rare and a common species of Eupatorium. Ecol Appl 7:519–530CrossRefGoogle Scholar
  9. Cadotte MW, Lovett-Doust J (2002) Ecological and taxonomic differences between rare and common plants of southwestern Ontario. Ecoscience 9:397–406Google Scholar
  10. Chytrý M, Kučera T, Kočí M (eds) (2001) Katalog biotopů České republiky (Habitat catalogue of the Czech Republic). AOPK ČR, PrahaGoogle Scholar
  11. Cotgreave P, Pagel M (1997) Predicting and understanding rarity: the comparative approach. In Kunin WE, Gaston KJ (1997) The biology of rarity. Causes and consequences of rare-common differences. Chapman & Hall, London, pp 237–261Google Scholar
  12. Danihelka J, Chrtek J, Kaplan Z, Wild J (2007) Seznam jmen cévnatých rostlin použitých v nálezové databázi květeny České republiky (verze 18.6.2007) (List of vascular plants of the Czech Republic, version 18.6.2007). Available at: http://www.ibot.cas.cz/sbirky/sez/index.php. Accessed 6 March 2010
  13. Díaz-Uriarte R, Garkand T (1998) Effects of branch length errors on the performance of phylogenetically independent contrasts. Syst Biol 47:654–672PubMedCrossRefGoogle Scholar
  14. Dodd ME, Silvertown J, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53:732–744CrossRefGoogle Scholar
  15. Edwards W, Westoby M (1996) Reserve mass and dispersal investment in relation to geographic range of plant species: phylogenetically independent contrasts. J Biogeogr 23:329–338CrossRefGoogle Scholar
  16. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (1992) Zeigerwerte von Pflanzen in Mitteleuropa. 3., durchgesehene Auflage. Verlag Erich Goltze GmbH & Co KG, GöttingenGoogle Scholar
  17. Eriksson O, Bremer B (1992) Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution 46:258–266CrossRefGoogle Scholar
  18. Eriksson O, Jakobsson A (1998) Abundance, distribution and life histories of grassland plants: A comparative study of 81 species. J Ecol 86:922–933CrossRefGoogle Scholar
  19. Fausto JA, Eckhart VM, Geber MA (2001) Reproductive assurance and the evolutionary ecology of self-pollination in Clarkia xantiana (Onagraceae). Amer J Bot 88:1794–1800CrossRefGoogle Scholar
  20. Felsenstein J (1985) Phylogenies and the comparative method. Amer Naturalist 125:2–15CrossRefGoogle Scholar
  21. Fiedler PL (1987) Life history and population dynamics of rare and common marispora lilies (Calochortus Pursh: Liliaceae). J Ecol 75:977–995CrossRefGoogle Scholar
  22. Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conservation Biol 11:727–737CrossRefGoogle Scholar
  23. Gaston KJ (1994) Rarity. Chapman & Hall, LondonCrossRefGoogle Scholar
  24. Grime JP (1979) Plant strategies and vegetation processes. John Wiley & Sons, ChichesterGoogle Scholar
  25. Gustafsson L (1994) A comparison of biological characteristics and distribution between Swedish threatened and non-threatened forest vascular plants. Ecography 17:39–49CrossRefGoogle Scholar
  26. Härtel H, Lončáková J, Hošek M (eds) (2009) Mapování biotopů v České republice. Východiska, výsledky, perspektivy (Habitat mapping in the Czech Republic). AOPK ČR, PrahaGoogle Scholar
  27. Hegde SG, Ellstrand NC (1999) Life history diferences between rare and common flowering plant species of California and the British Isles. Int J Pl Sci 160:1083–1091CrossRefGoogle Scholar
  28. Hejný S, Slavík B (eds) (1988) Květena České socialistické republiky 1 (Flora of the Czech socialist Republic 1). Academia, PrahaGoogle Scholar
  29. Hejný S, Slavík B (eds) (1990) Květena České republiky 2 (Flora of the Czech Republic 2). Academia, PrahaGoogle Scholar
  30. Hejný S, Slavík B (eds) (1992) Květena České republiky 3 (Flora of the Czech Republic 3). Academia, PrahaGoogle Scholar
  31. IUCN (2001) IUCN Red List Categories and Criteria. Version 3.1. IUCN Species Survival Commission, IUCN, Gland, CambridgeGoogle Scholar
  32. Kelly CK (1996) Identifying plant functional types using floristic data bases: Ecological correlates of plant range size. J Veg Sci 7:417–424CrossRefGoogle Scholar
  33. Kelly CK, Woodward FI (1996) Ecological correlates of plant range size: taxonomies and phylogenies in the study of plant commonness and rarity in Great Britain. Philos Trans, Ser B 351:1261–1269CrossRefGoogle Scholar
  34. Kleyer M, Bekker RM, Bakker J, Knevel IC, Thompson K, Sonnenschein M, Poschlod P, Van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch G, Hermy M, Adriaens Boedeltje G, Bossuyt B, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Dannemann A, Kühn I, Kunzmann D, Ozinga W, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Fitter A, Peco B (2008) The LEDA Traitbase: A database of plant life-history traits of North West Europe. J Ecol 96:1266–1274CrossRefGoogle Scholar
  35. Klotz S, Kühn I, Durka W (2002) BIOLFLOR – eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe Vegetationsk 38:1–334Google Scholar
  36. Knevel IC, Bekker RM, Kunzmann D, Stadler M, Thompson K (eds) (2005) The LEDA Traitbase. Collecting and measuring standards of life-history traits of the Northwest European flora. Scholma Druk B.V., BedumGoogle Scholar
  37. Klimešová J, Klimeš L (2006) CLO-PLA3 – database of clonal growth of plants from Central Europe. Available at: http://clopla.butbn.cas.cz. Accessed 14 May 2010
  38. Kubát K, Hrouda L, Chrtek J jun, Kaplan Z, Kirschner J, Štěpánek J (eds) (2002) Klíč ke květeně České republiky (Key to the flora of the Czech Republic). Academia, PrahaGoogle Scholar
  39. Kunin WE, Gaston KJ (1997) The biology of rarity. Causes and consequences of rare-common differences. Chapman & Hall, LondonGoogle Scholar
  40. Kunin WE, Shmida A (1997) Plant reproductive traits as a function of local, regional, and global abundance. Conservation Biol 11:183–192CrossRefGoogle Scholar
  41. Lahti T, Kemppainen E, Kurtto A, Uotila P (1991) Distribution and biological characteristics of threatened vascular plants in Finland. Biol Conservation 55:299–314CrossRefGoogle Scholar
  42. Lavergne S, Thompson JD, Garnier E, Debussche M (2004) The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107:505–518CrossRefGoogle Scholar
  43. Leishman MR, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of seed size. In Fenner M (ed) Seeds: The ecology of regeneration in plant communities. Ed. 2. CABI Publishing, pp 31–57Google Scholar
  44. Martins EP, Hansen TF (1999) Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Amer Naturalist 149:646–667CrossRefGoogle Scholar
  45. MathSoft, Inc. (2000) S-Plus 2000, Professional edition for windows, release 2. MathSoft, Inc., MassachusettsGoogle Scholar
  46. May RM (1999) Unanswered questions in ecology. Philos Trans, Ser B 354:1951–1959CrossRefGoogle Scholar
  47. Meffe GK, Carroll R (1994) Principles of conservation biology. Sinauer Associates, SunderlandGoogle Scholar
  48. Münzbergová Z (2005) Determinants of species rarity: population growth rates of species sharing the same habitat. Amer J Bot 92:1987–1994CrossRefGoogle Scholar
  49. Murray BR, Thrall PH, Gill AM, Nicotra AB (2002) How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol 27:291–310CrossRefGoogle Scholar
  50. Peat HJ, Fitter AH (1994) Comparative analyses of ecological characteristics of British angiosperms. Biol Rev 69:95–115CrossRefGoogle Scholar
  51. Pilgrim ES, Crawley MJ, Dolphin K (2004) Patterns of rarity in the native British flora. Biol Conservation 120:165–174CrossRefGoogle Scholar
  52. Pirie CD, Walmsley S, Ingle R, Jimenez AP, Magallanes AS, Kelly CK (2000) Investigations in plant commonness and rarity: A comparison of seed removal patterns in the widespread Jatropha standleyi and the endemic J. chamelensis (Euphorbiaceae). Biol J Linn Soc 71:501–512CrossRefGoogle Scholar
  53. Poschlod P, Kleyer M, Jackel AK, Dannemann A, Tackenberg O (2003) BIOPOP – a database of plant traits and Internet application for nature conservation. Folia Geobot 38:263–271CrossRefGoogle Scholar
  54. Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminée JHJ, van Groenendal JM (2008) Less lineages – more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol Lett 11:809–819PubMedCrossRefGoogle Scholar
  55. Procházka F (ed) (2001) Černý a červený seznam cévnatých rostlin České republiky (stav v roce 2000) (Black and red list of vascular plants of the Czech Republic – 2000). Příroda, Praha, 18:1–166Google Scholar
  56. Rabinowitz D (1981) Seven forms of rarity. In Synge H (ed) The biological aspects of rare plant conservation. Wiley, New York, pp 205–217Google Scholar
  57. Ratcliffe DA (1984) Post-medieval and recent changes in British vegetation: The culmination of human influence. New Phytol 98:73–100CrossRefGoogle Scholar
  58. Rheindt FE, Grafe TU, Abouheif E (2004) Rapidly evolving traits and the comparative method: how important is testing for phylogenetic signal? Evol Ecol Res 6:377–396Google Scholar
  59. Römermann C, Tackenberg O, Jackel A-K, Poschlod P (2008) Eutrophication and fragmentation are related to species’ rate of decline but not to species rarity: results from a functional approach. Biodivers & Conservation 17:591–604CrossRefGoogle Scholar
  60. Rohlf J (2006) A comment on phylogenetic correction. Evolution 60:1509–1515PubMedCrossRefGoogle Scholar
  61. Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244CrossRefGoogle Scholar
  62. Schoen DJ, Morgan MT, Bataillon T (1996) How does self-pollination evolve? Inferences from floral ecology and molecular genetic variation. Philos Trans, Ser B 351:1281–1290CrossRefGoogle Scholar
  63. Slavík B (ed) (1995) Květena České republiky 4 (Flora of the Czech Republic 4). Academia, PrahaGoogle Scholar
  64. Slavík B (ed) (1997) Květena České republiky 5 (Flora of the Czech Republic 5). Academia, PrahaGoogle Scholar
  65. Slavík B (ed) (2000) Květena České republiky 6 (Flora of the Czech Republic 6). Academia, PrahaGoogle Scholar
  66. Slavík B, Štěpánková J (eds) (2004) Květena České republiky 7 (Flora of the Czech Republic 7). Academia, PrahaGoogle Scholar
  67. Stebbins GL (1957) Self-fertilization and population variability in the higher plants. Amer Naturalist 91:337–354CrossRefGoogle Scholar
  68. Tackenberg O, Stöcklin J (2008) Wind dispersal of alpine plant species: A comparison with lowland species. J Veg Sci 19:109–118CrossRefGoogle Scholar
  69. ter Braak CJ, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination, version 4.5. Microcomputer Power, Ithaca, New YorkGoogle Scholar
  70. Thompson K, Bakker JP, Bekker RM (1997) Soil seed banks of North-West Europe: methodology, density and longevity. Cambridge University Press, CambridgeGoogle Scholar
  71. Thompson K, Gaston KJ, Band SR (1999) Range size, dispersal and niche breadth in the herbaceous flora of central England. J Ecol 87:150–155CrossRefGoogle Scholar
  72. Walck JL, Baskin JM, Baskin CC (2001) Relative competitive abilities and growth characteristics of narrowly endemic and geographically widespread Solidago species (Asteraceae). Amer J Bot 86:820–828CrossRefGoogle Scholar
  73. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100PubMedCrossRefGoogle Scholar
  74. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: A common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar
  75. Witkowski ETF, Lamont BB (1997) Does the rare Banksia goodii have inferior vegetative, reproductive or ecological attributes compared with its widespread co-occuring relative B. gardneri? J Biogeogr 24:469–482CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2013

Authors and Affiliations

  • Jarmila Gabrielová
    • 1
  • Zuzana Münzbergová
    • 1
    • 2
  • Oliver Tackenberg
    • 3
  • Jindřich Chrtek
    • 2
  1. 1.Faculty of Science, Department of BotanyCharles University in PraguePragueCzech Republic
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic
  3. 3.Institute of Ecology, Evolution and DiversityGoethe-University FrankfurtFrankfurt am MainGermany

Personalised recommendations