Folia Geobotanica

, Volume 48, Issue 2, pp 163–188 | Cite as

Magellanic Wetlands: More than Moor

  • Ladislava Filipová
  • Radim Hédl
  • Martin Dančák


Magellanic wetlands in the Patagonian steppe are unique habitats from the point of view of conservation and agriculture. Little is known about their environmental characteristics and plant communities. Our aim was to describe vegetation variability to improve current classifications and reveal environmental factors correlated with vegetation variability in the meadow wetlands (vegas) of southern Chilean Patagonia and Chilean Tierra del Fuego. Five vegetation types resulted from TWINSPAN classification and subsequent interpretation, based on which four new associations were delimited: Magellanic acidic marshes – the Scirpo cernui-Calthetum sagittatae, Magellanic alkaline wet grasslands – the Samolo spathulatae-Azorelletum trifurcatae, Magellanic tall sedge marshes – the Carici maclovianae-Agrostietum stoloniferae, and Magellanic pastures – the Hordeo lechleri-Trifolietum repentis. The fifth vegetation type, saline wetlands, is the rarest and so far the least known community. Magellanic wetland vegetation forms a gradient from short saline marshes to tall graminoid-dominated communities. They reflect a major soil gradient of pH and organic matter content, along with the content of major elements (N, P, K, Fe, Al). Other important factors are ground water regime and grazing intensity.


Acidity gradient Classification Patagonia Soil chemistry Tierra del Fuego Wetland vegetation 



This work was financially supported by INIA CRI Kampenaike, by the Mobility Fund of the Ministry of Education of the Czech Republic and by the internal grant of the Faculty of Environment, UJEP, Ústí nad Labem. Radim Hédl was supported by long-term research project RVO 67985939 from the Academy of Sciences of the Czech Republic and grant 206/08/0389 of the Grant Agency of the Czech Republic. Martin Dančák was supported by Palacký University grant IGA Prf-2010. We thank Laco Mucina for his valuable comments, Markéta Chudomelová for the computation of NMDS and Péter Szabó for improving our English.

Supplementary material

12224_2012_9143_MOESM1_ESM.xls (110 kb)
ESM 1 (XLS 109 kb)


  1. Adler P, Milchunas DG, Sala OE, Burke IC, Lauenroth WK (2005) Plant traits and ecosystem grazing effects: Comparison of U.S. sagebrush steppe and Patagonian steppe. Ecol Appl 15:774–792CrossRefGoogle Scholar
  2. Allen-Diaz BH (1991) Water table and plant species relationships in Sierra Nevada meadows. Amer Midl Naturalist 126:30–43CrossRefGoogle Scholar
  3. Banks MS, Sarno RJ, Franklin WL (2003) Spatial distribution of guanaco mating sites in southern Chile: conservation implication. Biol Conservation 112:427–434CrossRefGoogle Scholar
  4. Blanco DE, de la Balze VM (eds) (2004) Los turbales de la Patagonia. Bases para su inventario y la conservación de su biodiversidad. Publicación No. 19, Wetlands International, Buenos AiresGoogle Scholar
  5. Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status and threats. Environm Conservation 29:115–133Google Scholar
  6. Buono G, Oesterheld M, Nakamatsu V, Paruelo JM (2010) Spatial and temporal variation of primary production of Patagonian wet meadows. J Arid Environm 74:1257–1261CrossRefGoogle Scholar
  7. Cingolani AM, Anchorena J, Collantes MB (1998) Landscape heterogeneity and long-term animal production in Tierra del Fuego. J Range Managem 51:79–87CrossRefGoogle Scholar
  8. Clausen JC, Ortega IM, Glaude CM, Relyea RA, Garray G, Guineo O (2006) Classification of wetlands in a Patagonian National Park, Chile. Wetlands 26:217–229CrossRefGoogle Scholar
  9. Clayton WD, Harman KT, Williamson H (2002–onwards) World grass species: descriptions, identification, and information retrieval. Available at: (Last accessed on 20 February 2012)
  10. Clayton WD, Harman KT, Williamson H (2006–onwards) GrassBase – The online world grass flora. Available at: (Last accessed on 20 February 2012)
  11. Codignotto JO, Malumián N (1981) Geología de la región al norte del paralelo 54° Sur de la Isla Grande de la Tierra del Fuego. Revista Asoc Geol Argentina 36(1):44–88Google Scholar
  12. Collantes MB, Faggi AM (1999) Los humedales del sur de Sudamérica. In Malvárez AI (ed) Tópicos sobre humedales subtropicales y templados de Sudamérica. UNESCO, Montevideo, pp 14–24Google Scholar
  13. Collantes MB, Anchorena J, Cingolani AM (1999) The steppes of Tierra del Fuego: floristic and growth form patterns controlled by soil fertility and moisture. Pl Ecol 140:61–75CrossRefGoogle Scholar
  14. Collantes MB, Anchorena J, Stoffella S, Escartín C, Rauber R (2009) Wetlands of the Magellanic Steppe (Tierra del Fuego, Argentina). Folia Geobot 44:227–245CrossRefGoogle Scholar
  15. Covacevich N, Ruz E (1996) Praderas en la zona austral: XII Región (Magallanes). In Ruiz I (ed) Praderas para Chile. Instituto de Investigaciones Agropecuarias (INIA), Santiago, pp 639–655Google Scholar
  16. Darwin C (1989) The voyage of the Beagle. Penguin Classics, LondonGoogle Scholar
  17. Fajardo A, González ME (2009) Replacement patterns and species coexistence in an Andean Araucaria-Nothofagus forest. J Veg Sci 20:1176–1190CrossRefGoogle Scholar
  18. Filipová L, Hédl R, Covacevich NC (2010) Variability of soil types in wetland meadows in the south of the Chilean Patagonia. Chilean J Agric Res 70:255–277CrossRefGoogle Scholar
  19. Galán de Mera A, Vicente Orellana JA (2006) Aproximación al esquema sintaxonómico de la vegetación de la región del Caribe y América del Sur. Anales Biol 28:3–27Google Scholar
  20. Gandullo R, Faggi AM (2005) Interpretación sintaxonómica de los humedales del noroeste de la Provincia de Neuquén, Argentina. Darwiniana 43:10–29Google Scholar
  21. Golluscio RA, Deregibus VA, Paruelo JM (1998) Sustainability and range management in the Patagonian steppes. Ecol Austral 8:265–284Google Scholar
  22. Hájková P, Wolf P, Hájek M (2004) Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Ann Bot Fennici 41:249–262Google Scholar
  23. Hájek M, Horsák M, Hájková P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and en effort to standardise fen terminology in ecological studies. Perspect Pl Ecol Evol Syst 8:97–114CrossRefGoogle Scholar
  24. Hertel D, Therburg A, Villalba R (2008) Above- and below-ground response by Nothofagus pumilio to climatic conditions at the transition from the steppe-forest boundary to the alpine treeline in southern Patagonia, Argentina. Pl Ecol Divers 1:21–33Google Scholar
  25. Hill MO (1979) TWINSPAN. A Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, NYGoogle Scholar
  26. IUSS (2006) World reference base for soil resources 2006. Ed. 2. World Soil Resources Reports Nº 103, FAO, RomeGoogle Scholar
  27. Jongman RHG, ter Braak CJF, van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Kerr AJ, McAdam JH (2008) Characteristics of patches of short grasses and herbs in the Falkland islands and their management for sheep grazing. Anales Inst Patagonia 36:5–24Google Scholar
  29. Kleinebecker T, Hölzer N, Vogel A (2007) Gradients of continentality and moisture in South Patagonian peatland vegetation. Folia Geobot 42:363–382CrossRefGoogle Scholar
  30. Kleinebecker T, Hölzer N, Vogel A (2008) South Patagonian ombotrophic bog vegetation reflects biogeochemical gradients at the landscape level. J Veg Sci 19:151–160CrossRefGoogle Scholar
  31. Kleinebecker T, Hölzer N, Vogel A (2010) Patterns and gradients of diversity in South Patagonian ombrotrophic peat bogs. Austral Ecol 35:1–12CrossRefGoogle Scholar
  32. León RJC, Bran D, Collantes MB, Paruelo J, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Austral 8:125–14Google Scholar
  33. Markgraf V, Huber UM (2010) Late and postglacial vegetation and fire history in Southern Patagonia and Tierra del Fuego. Paleogeogr Palaeoclimatol Palaeoecol 297:351–366CrossRefGoogle Scholar
  34. Milchunas DG, Lauenroth WK, Chapman PL, Kazempour MK (1989) Effects of grazing, topography and precipitation on the structure of a semiarid grassland. Vegetatio 80:11–23CrossRefGoogle Scholar
  35. Moore DM (1983) Flora of Tierra del Fuego. Anthony Nelson England, Missouri Botanical Garden, St LouisGoogle Scholar
  36. Nekola JC (2004) Vascular plant compositional gradients within and between Iowa fens. J Veg Sci 15:771–780Google Scholar
  37. Oksanen J et al. (2011) Vegan: community ecology package. Version 1.17-9. Available at: (accessed on 21 May 2011)
  38. Paruelo JM, Sala OE, Beltrán AB (2000) Long-term dynamics of water and carbon in semi-arid ecosystems: a gradient analysis in the Patagonian steppe. Pl Ecol 150:133–143CrossRefGoogle Scholar
  39. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  40. Pérez C, Covacevich N, Lira R (2006) Sistemas de pastoreo en cuatro regiones ecológicas de la región patagónica de Chile (1993). In Strauch O, Covacevich N, Cárdenas A (eds) El manejo sustentable de las praderas naturales de Magallanes. SOCHIPA en Magallanes. 30 años. Serie Actas INIA N° 35, Instituto de Investigaciones Agropecuarias (INIA), Punta Arenas, p 16Google Scholar
  41. Pisano EV (1971) Comunidades vegetales del area del Fiordo Parry. Tierra del Fuego (Parque nacional Alberto M. de Agostini). Anales Inst Patagonia 2:93–141Google Scholar
  42. Pisano EV (1972) Comunidades vegetales del area de Bahía Morris, Isla Capitán Aracena, Tierra del Fuego (Parque Nacional Hernando de Magallanes). Anales Inst Patagonia 3:103–130Google Scholar
  43. Pisano EV (1973) Fitogeografía de la península Brunswick, Magallanes. I. Comunidades meso-higromorficase hidromorficas. Anales Inst Patagonia 4:141–206Google Scholar
  44. Pisano EV (1977) Fitogeografía de Fuego-Patagonia chilena I. Comunidades vegetales entre las latitudes 52 y 56°S. Anales Inst Patagonia 8:121–250Google Scholar
  45. Pisano EV (1985) La estepa patagónica como recurso pastoril en Aysen y Magallanes. Amb Desarr 1:45–59Google Scholar
  46. Posse G, Anchorena J, Collantes MB (2000) Spatial micro-patterns in the steppe of Tierra del Fuego induced by sheep grazing. J Veg Sci 11:43–50CrossRefGoogle Scholar
  47. Roig FA, Anchorena J, Dollenz O, Faggi AM, Méndez E (1985) Las comunidades vegetales de la transecta botánica de la Patagonia Austral. In Boelcke O, Moore DM, Roig FA (eds) Transecta Botánica de la Patagonia Austral. CONICET, Instituto de la Patagonia y Royal Society London, Buenos Aires, pp 350–519Google Scholar
  48. Roleček J, Tichý L, Zelený D, Chytrý M (2009) Modified TWINSPAN classification in which the hierarchy respects cluster. J Veg Sci 20:596–602CrossRefGoogle Scholar
  49. Sáez C (1994) Caracterización de la fertilidad de los suelos de la Región de Magallanes. Informe Final. Proyecto Fundación fondo investigaciones agropecuarias. Universidad de Magallanes, Punta ArenasGoogle Scholar
  50. SAG (2004) El pastizal de Magallanes. Guía de uso, condición actual y propuesta de seguimiento para determinación de tendencia. Gobierno regional de Magallanes y Antártica Chilena, Ministerio de agricultura, servicio agrícola y ganadero (SAG) y Departamento de protección de los recursos naturales renovables, Punta ArenasGoogle Scholar
  51. Schneider C, Glaser M, Kilian R, Santana A, Butorovic N, Casassa G (2003) Weather observations across the southern Andes at 53° S. Phys Geogr 24:97–119CrossRefGoogle Scholar
  52. StatSoft, Inc. (2011) STATISTICA (data analysis software system), version 10. Available at:
  53. Strauch O, Covacevich N, Cárdenas A (eds) (2006) El manejo sustentable de las praderas naturales de Magallanes. SOCHIPA en Magallanes. 30 años. Serie Actas INIA N° 35. Instituto de investigaciones agropecuarias (INIA), Punta ArenasGoogle Scholar
  54. ter Braak CJF, Šmilauer P (2002) Canoco for Windows. Version 4.5. Centre for Biometry Wageningen, CPRO-DLO, WageningenGoogle Scholar
  55. Tahvanainen T, Sallantaus T, Heikkilä R, Tolonen K (2002) Spatial variation of mire surface water chemistry and vegetation in north-eastern Finland. Ann Bot Fennici 39:235–251Google Scholar
  56. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453CrossRefGoogle Scholar
  57. Tuhkanen S (1992) The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Bot Fennici 145:1–64Google Scholar
  58. van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effect on community similarity. Vegetatio 39:97–114CrossRefGoogle Scholar
  59. Weber HE, Moravec J, Theurillat J-P (2000) International code of phytosociological nomenclature. Ed. 3. J Veg Sci 11:739–768CrossRefGoogle Scholar
  60. Wheeler BD, Proctor CF (2000) Ecological gradients, subdivisions and terminology of north west European mires. J Ecol 88:187–203CrossRefGoogle Scholar
  61. Wille M, Schaebitz F (2009) Late-glacial and Holocene climate dynamics at the steppe/forest ecotone in southernmost Patagonia, Argentina: the pollen record from a fen near Brazo Sur, Lago Argentino. Veg Hist Archaeobot 18:225–234CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2012

Authors and Affiliations

  • Ladislava Filipová
    • 1
  • Radim Hédl
    • 2
  • Martin Dančák
    • 3
  1. 1.Faculty of EnvironmentJan Evangelista Purkyně University in Ústí nad LabemÚstí nad LabemCzech Republic
  2. 2.Department of Vegetation EcologyInstitute of Botany of the Academy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.Faculty of Science, Department of Ecology & Environmental SciencesPalacký UniversityOlomoucCzech Republic

Personalised recommendations