Skip to main content
Log in

Classifying and Mapping Potential Distribution of Forest Types Using a Finite Mixture Model

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The present paper presents the application of a finite mixture model (FMM) to analyze spatially explicit data on forest composition and environmental variables to produce a high-resolution map of their current potential distribution. FMM provides a convenient yet formal setting for model-based clustering. Within this framework, forest data are assumed to come from an underlying FMM, where each mixture component corresponds to a cluster and each cluster is characterized by a different composition of tree species. An important extension of this model is based on including a set of covariates to predict class membership. These covariates can be climatic and topographical parameters as well as geographical coordinates and the class membership of neighbouring plots. FMM was applied to a national forest inventory of Italy consisting of 6,714 plots with a measure of abundance for 27 tree species. In this way, a map of potential forest types was produced. The limitations and usefulness of the proposed modelling approach were analyzed and discussed, comparing the results with an independently derived expert map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In Petrov BN, Csaki F (eds) Second International Symposium on Information Theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Alfó M, Nieddu L, Vicari D (2009) Finite mixture models for mapping spatially dependent disease counts. Biometr J 51:84–97

    Article  Google Scholar 

  • Attorre F, Alfò M, De Sanctis M, Francesconi F, Bruno F (2007) Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int J Climatol 27:1825–1843

    Article  Google Scholar 

  • Attorre F, Alfò M, Francesconi F, Valenti R, Vitale M, Bruno F (2011) Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl Veg Sci 14:242–255

    Article  Google Scholar 

  • Austin MP, Smith TM (1989) A new model for the continuum concept. Vegetatio 83:35–47

    Article  Google Scholar 

  • Banfield JD, Raftery AE (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics 49:803–821

    Article  Google Scholar 

  • Bartlein PJ, Prentice IC, Webb T (1986) Climatic response surfaces from pollen data for some eastern North American taxa. J Biogeogr 13:35–57

    Article  Google Scholar 

  • Benito Garzón M, Sànchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178

    Article  Google Scholar 

  • Bodzogan H (1994) Mixture-model cluster analysis using model selection criteria and a new informational measure of complexity. In Bodzogan H (ed) Proceedings of the first US/Japan conference on the frontiers of statistical modelling: An informational approach. Volume 2: Multivariate statistical modeling Kluwer Academic Publishers, Dordrecht pp 69–113

  • Bohn U, Neuhäusl R, Gollub G, Hettwer C, Neuhäuslová Z, Raus T, Schlüter H, Weber H (2003) Map of the natural vegetation of Europe. German Federal Agency for Nature Conservation, Bonn

    Google Scholar 

  • Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2011) Statistical mapping of tree species over Europe. Eur J Forest Res 131(1):145–157

    Article  Google Scholar 

  • Brzeziecki B, Kienast F, Wildi O (1993) A simulated map of the potential natural forest vegetation of Switzerland. J Veg Sci 4:499–508

    Article  Google Scholar 

  • Chiarucci A, Araújo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21:1172–1178

    Article  Google Scholar 

  • Day NE (1969) Estimating the components of a mixture of normal distributions. Biometrika 56:463–474

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DA (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc 39(1):1–38

    Google Scholar 

  • Dengler J, Jansen F, Glöckler F, Peet RK, De Cáceres M, Chytrý M, Ewald J, Oldeland J, Lopez-Gonzalez G, Finckh M, Mucina L, Rodwell JS, Schaminée JHJ, Spencer N (2011) The global index of vegetation-plot databases (GIVD): a new resource for vegetation science. J Veg Sci 22:582–597

    Article  Google Scholar 

  • EEA (2006) European forest types. Categories and types for sustainable forest management reporting and policy. EEA Technical report 9, European Environment Agency, Copenhagen

  • Falcucci A, Maiorano L, Boitani L (2007) Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecol 22:617–631

    Article  Google Scholar 

  • FAO (2007) State of the world’s forests. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients. Progr Phys Geogr 19:474–499

    Article  Google Scholar 

  • Huntley B, Berry PM, Cramer W, McDonald AP (1995) Modelling present and potential future ranges of some European higher plants using climate response. J Biogeogr 22:967–1001

    Article  Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  Google Scholar 

  • Kowarik I (1987) Kritische Anmerkungen zum theoretischen Konzept der potentiellen natürlichen Vegetation mit Anregungen zu einer zeitgemäßen Modifikation. Tuexenia 7:53–67

    Google Scholar 

  • Lavorel S, Canadell J, Rambal S, Terradas J (1998) Mediterranean terrestrial ecosystems: research priorities on global change effects. Global Ecol Biogeogr Lett 7:157–166

    Article  Google Scholar 

  • Maggini R, Lehmann A, Zimmermann NE, Guisan A (2006) Improving generalised regression analysis for the spatial prediction of forest communities. J Biogeogr 33:1729–1749

    Article  Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley Series in Probability and Statistics, John Wiley, New York

  • McNicholas PD, Murphy TB (2008) Parsimonious Gaussian mixture models. Statist Comput 18(3):285–296

    Article  Google Scholar 

  • Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean basin: setting global conservation priorities. Conservation Biol 13:1510–1513

    Article  Google Scholar 

  • Miller J, Franklin J (2002) Modeling the distribution of four vegetation alliances using generalised linear models and classification trees with spatial dependence. Ecol Modelling 157:227–247

    Article  Google Scholar 

  • Miller J, Franklin J, Aspinall R (2007) Incorporating spatial dependence in predictive vegetation models. Ecol Modelling 202:225–242

    Article  Google Scholar 

  • Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006) Quantifying components of risk for European woody species under climate change. Global Change Biol 12:1788–1799

    Article  Google Scholar 

  • Pfeffer K, Pebesma EJ, Burrough P (2003) Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape Ecol 18:759–776

    Article  Google Scholar 

  • Pignatti S (1998) I boschi d’Italia (The woods of Italy). UTET, Torino

    Google Scholar 

  • Pons J, Pausas JG (2006). Oak regeneration in heterogeneous landscapes: The case of fragmented Quercus suber forests in the eastern Iberian Peninsula. Forest Ecol Managem 231:196–204

    Article  Google Scholar 

  • Prentice IC, Bartlein PJ, Webb T (1991) Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72:2038–2056

    Article  Google Scholar 

  • Scarascia-Mugnozza G, Helfried O, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecol Managem 132:97–109

    Article  Google Scholar 

  • Scarnati L, Attorre F, Farcomeni A, Francesconi F, De Sanctis M (2009) Modelling the spatial distribution of tree species with fragmented populations from abundance data. Community Ecol 10:215–224

    Article  Google Scholar 

  • Schlattmann P (2009) Medical applications of finite mixture models. Springer Verlag, Berlin

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Statist 6:461–464

    Article  Google Scholar 

  • Scott AJ, Symons MJ (1971) Clustering methods based on likelihood ratio criteria. Biometrics 27:387–397

    Article  Google Scholar 

  • Silva DE, Badeau V, Legay M, Corcket E and Dupouey JL (2012) Tracking human impact on current tree species distribution using plant communities. J Veg Sci 23:313–324

    Article  Google Scholar 

  • Somodi I, Molnár Z, Ewald J (2012) Towards a more transparent use of the potential natural vegetation concept – an answer to Chiarucci et. al. J Veg Sci 23:590–595

    Article  Google Scholar 

  • Svenning JC, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Svenning JC, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr 32:1019–1033

    Article  Google Scholar 

  • Svenning JC, Skov F (2007) Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol Lett 10:453–460

    Article  PubMed  Google Scholar 

  • Tabacchi G, De Natale F, Floris A, Gagliano C, Gasparini P, Scrinzi G, Tosi V (2007) Italian National Forest Inventory: methods, state of the project, and future developments. In McRoberts RE; Reams GA, Van Deusen PC, McWilliams WH (eds) Proceedings of the seventh annual forest inventory and analysis symposium. U.S. Department of Agriculture Forest Service, Washington, DC, pp 55–66

    Google Scholar 

  • Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. John Wiley & Sons, New York

    Google Scholar 

  • Tröltzsch K, van Brusselen J, Schuck A (2009) Spatial occurrence of major tree species groups in Europe derived from multiple data sources. Forest Ecol Managem 257:294–302

    Article  Google Scholar 

  • Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziol (Stolzenau) 13:4–42

    Google Scholar 

  • Vallejo R, Aronson J, Pausas JC, Cortina J (2005) Restoration of Mediterranean woodlands. In van Andel J, Aronson J (eds) Restoration ecology: a European perspective. Blackwell Science, Oxford, pp 193–207

    Google Scholar 

  • Vermunt JK, Magidson J (2000) Latent Gold User’s Manual. Statistical Innovations Inc., Boston

    Google Scholar 

  • Wolfe JH (1963) Object cluster analysis of social areas. Master’s Thesis, Berkeley University of California, Berkeley

  • Wolfe JH (1970) Pattern clustering by multivariate mixture analysis. Multivariate Behav Res 5:329–350

    Article  Google Scholar 

  • Zerbe S (1998) Potential natural vegetation: validity and applicability in landscape planning and nature conservation. Appl Veg Sci 1:165–172

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Italian Ministry of Environment in collaboration with CONECOFOR (CONtrollo ECOsistemi FORestali), the intensive monitoring program of forest ecosystems in Italy. The program falls under the Pan-European Level II Monitoring of Forest Ecosystems and is co-sponsored by the European Union under the Regulation nr. 2152/2003 “Forest Focus”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Attorre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attorre, F., Francesconi, F., De Sanctis, M. et al. Classifying and Mapping Potential Distribution of Forest Types Using a Finite Mixture Model. Folia Geobot 49, 313–335 (2014). https://doi.org/10.1007/s12224-012-9139-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-012-9139-8

Keywords

Navigation