Folia Geobotanica

, Volume 46, Issue 2–3, pp 255–270 | Cite as

Diversity and Frequency of Clonal Traits Along Natural and Land-Use Gradients in Grasslands of the Swiss Alps

  • Camilla WellsteinEmail author
  • Patrick Kuss


The frequency of clonal plants in different vegetation types is known to be influenced by environmental and land-use factors. However, the underlying behavior of individual clonal traits or clonal trait diversity has received little attention. Here, we assess for species- and trait-diverse grasslands of the Swiss Alps the relative importance of temperature, soil moisture, land use and species richness on the diversity and frequency of individual compared with all clonal traits. We further analyzed how cover-weighted data alters the relationships found with commonly used presence-absence data. We combined species compositional, land-use and environmental data from 236 28-m2 grassland plots with clonal trait information for 527 species following the Clonal Growth Organ (CGO) classification. Test results are based on linear models, ANOVAs and ANCOVAs. The grassland sites were 84% dominated by clonal species. Drought-prone grasslands harbored the least clonal species. No increase in clonality was detected with decreasing temperature (= altitude). Mown or pastured grasslands had more clonal species than fallows. Certain sets of traits were correlated. Rhizomatous species especially reacted strongly to climatic and land-use gradients and had highest frequencies in cold, moist and disturbed sites. Clonal diversity was strongly dependent on species richness. Cover-weighted and presence-absence based estimates were largely similar. Overall, our data outlined that common clonal traits react differently to natural and land-use gradients as well as differently to the sum of clonal traits. Also, soil moisture was more decisive than temperature (= altitude) for the presence of clonal species. Lastly, the strong correlation between species-richness and clonal trait diversity needs to be accounted for when interpreting the functional role of clonal traits.


Altitude Climatic gradients CLO-PLA database Functional traits Weighted abundance 



The authors thank the Swiss Federal Office for the Environment and S. Eggenberg (UNA Bern, CH) for access to and support with the TWW database, O. Wildi (WSL, CH) for provision of bioclimatic parameters and J. Klimešová (Institute of Botany, Třeboň, CZ) for support with clonal trait classification. Further, the authors greatly appreciate the comments by J. Klimešová, D. Prati and two anonymous reviewers on previous versions of the manuscript. Last but not least, the authors kindly acknowledge the financial support of the German Academic Exchange Service (D/07/01321), the Stiftung zur Förderung der Pflanzenkenntnis (Basel, CH) and the logistic facilitation by the Jungfraubahnen AG (Interlaken, CH).

Supplementary material


  1. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Austal J Bot 51:335–380CrossRefGoogle Scholar
  2. Crawley M (2007) The R Book. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  3. Delarze R, Gonseth Y (2008) Lebensräume der Schweiz: Ökologie, Gefährdung, Kennarten. Ott Verlag AG, BernGoogle Scholar
  4. Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655CrossRefGoogle Scholar
  5. Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Scarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007) Plant trait responses to grazing – a global synthesis. Global Change Biol 13:313–341CrossRefGoogle Scholar
  6. Dierschke H (1994) Pflanzensoziologie: Grundlagen und Methoden. Ulmer Verlag, StuttgartGoogle Scholar
  7. Eggenberg S, Möhl A (2007) Flora Vegetativa. Paul Haupt Verlag, BernGoogle Scholar
  8. Eggenberg S, Dalang T, Dipner M, Mayer C (2001) Kartierung und Bewertung der Trockenwiesen und weiden von nationaler Bedeutung. Technischer Bericht. Schriftenreihe Umwelt Nr. 325. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), BernGoogle Scholar
  9. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ed. 5. Eugen Ulmer, StuttgartGoogle Scholar
  10. Evette A, Bedecarrats A, Bornette G (2009) Environmental constraints influence clonal traits of herbaceous plant communities in an Alpine massif. Folia Geobot 44:95–108CrossRefGoogle Scholar
  11. Fischer M, Wipf S (2002) Effect of low-intensity grazing on the species-rich vegetation of traditionally mown subalpine meadows. Biol Conservation 104:1–11CrossRefGoogle Scholar
  12. Fischer M, Van Kleunen M, Schmid B (2004) Experimental life-history evolution: selection on growth form and its plasticity in a clonal plant. J Evol Biol 17:331–341PubMedCrossRefGoogle Scholar
  13. Fischer M, Rudmann-Maurer K, Weyand A, Stöcklin J (2008) Agricultural land use and biodiversity in the Alps – How cultural tradition and socioeconomically motivated changes are shaping grassland biodiversity in the Swiss Alps. Mount Res Developm 28:148–155CrossRefGoogle Scholar
  14. Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260CrossRefGoogle Scholar
  15. Guisan A, Broennimann O, Engler R, Vust M, Yoccoz NG, Lehmann A, Zimmermann NE (2006) Using niche-based models to improve the sampling of rare species. Conservation Biol 20:501–511CrossRefGoogle Scholar
  16. Halassy M, Campetella G, Canullo R, Mucina L (2005) Patterns of functional clonal traits and clonal growth modes in contrasting grasslands in the central Apennines, Italy. J Veg Sci 16:29–36CrossRefGoogle Scholar
  17. Hartmann H (1957) Studien über die vegetative Fortpflanzung in den Hochalpen. Jahresber Naturf Ges Graubündens 86:3–168Google Scholar
  18. Hegi G (1975–2009) Illustrierte Flora von Mitteleuropa. Paul Parey Verlag, BerlinGoogle Scholar
  19. Hess HE, Landolt E, Hirzel R (1972) Flora der Schweiz. Birkhäuser Verlag, BaselGoogle Scholar
  20. Kielland K, Chapin FS III. (1992) Nutrient absorption and accumulation in arctic plants. In: Chapin FS III, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, London, pp 321–335Google Scholar
  21. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel AK, Kühn D, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  22. Klimeš L (1999) Small-scale mobility in a species-rich grassland. J Veg Sci 10:209–218CrossRefGoogle Scholar
  23. Klimeš L (2003). Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic Appl Ecol 4:317–328CrossRefGoogle Scholar
  24. Klimeš L, Klimešová J (1999) CLO-PLA2 – a database of clonal plants in central Europe. Pl Ecol 141:9–19CrossRefGoogle Scholar
  25. Klimeš L, Klimešová J (2000) Plant rarity and the type of clonal growth. Z Ökol Naturschutz 9:43–52Google Scholar
  26. Klimeš L, Klimešová J, Hendriks R, Groenendael JM (1997) Clonal plant architecture: a comparative analysis of form and function. In de Kroon H, van Groenendael JM (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 1–29Google Scholar
  27. Klimešová J, Klimeš L (2003) Resprouting of herbs in disturbed habitats: is it adequately described by the Bellingham–Sparrow’s model? Oikos 103:225–229CrossRefGoogle Scholar
  28. Klimešová J, Klimeš L (2006) CLO-PLA3: a database of clonal growth architecture of Central-European plants. Available at:
  29. Klimešová J, Klimeš L (2007) Bud banks and their role in vegetative regeneration—a literature review and proposal for simple classification and assessment. Perspect Pl Ecol Evol Syst 8:115–129CrossRefGoogle Scholar
  30. Klimešová J, Klimeš L (2008) Clonal growth diversity and bud banks of plants in the Czech flora: an evaluation using the CLO-PLA3 database. Preslia 80:255–275Google Scholar
  31. Klimešová J, Latzel V, de Bello F, van Groenendael JM (2008) Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia 80:45–253Google Scholar
  32. Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Ed. 2. Springer Verlag, HeidelbergGoogle Scholar
  33. Kun A, Oborny B (2003) Survival and competition of clonal plant populations in spatially and temporally heterogeneous habitats. Community Ecol 4:1–20CrossRefGoogle Scholar
  34. Kutschera L, Lichtenegger E (1992) Wurzelatlas mitteleuropäischer Grünlandpflanzen. Band 2 Pteridophyta und Dicotyledoneae, Teil 1 Morphologie, Anatomie, Ökologie, Verbreitung, Soziologie, Wirtschaft. Gustav Fischer, StuttgartGoogle Scholar
  35. Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18Google Scholar
  36. McLellan A, Prati D, Kaltz O, Schmid B (1997) Structure and analysis of phenotypic and genetic variation in clonal plants. In de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 185–210Google Scholar
  37. Milchunas DG, Sala OE, Lauenroth WK (1988) A generalized model of the effects of grazing by large herbivores on grassland community structure. Amer Naturalist 132:87–106CrossRefGoogle Scholar
  38. Mládek J, Hejcman M, Hejduk S, Duchoslav M, Pavlu V (2011) Community seasonal development enables late defoliation without loss of forage quality in semi-natural grasslands. Folia Geobot doi: 10.1007/s12224-010-9083-4
  39. Nogués-Bravo D, Araujo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–219PubMedCrossRefGoogle Scholar
  40. Oborny B and Cain ML (1997) Models of spatial spread and foraging in clonal plants. In de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 155–183Google Scholar
  41. Pakeman RJ, Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Freitas H, Golodet C, Kigel J, Kleyer M, Leps J, Meier T, Papadimitriou M, Papanastasi VP, Quested H, Quetier F, Rusch G, Sternberg M, Theau JP, Thebault A, Vile D (2008) Impact of abundance weighting on the response of seed traits to climate and land use. J Ecol 96:355–366CrossRefGoogle Scholar
  42. Piqueras J, Klimeš L, Redbo-Torstensson P (1999) Modelling the morphological response to nutrient availability in the clonal plant Trientalis europaea L. Pl Ecol 141:117–127CrossRefGoogle Scholar
  43. Pokarzhevskaya GA (1995) Morphological analysis of alpine communities of the north-western Caucasus. Folia Geobot Phytotax 30:197–210CrossRefGoogle Scholar
  44. Rautiainen P, Koivula K, Hyvarinen M (2004) The effect of within-genet and between-genet competition on sexual reproduction and vegetative spread in Potentilla anserina ssp egedii. J Ecol 92:505–511CrossRefGoogle Scholar
  45. R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available at:
  46. Roberts DW, Fisher RF, Long JM, Jack SN (1993) The leaf area allocation model: simulation of Rocky Mountain forest dynamics and climate change. Final Report for EPA Cooperative Agreement #817539. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  47. Rosenfeld JS (2002) Functional redundancy in ecology and conservation. Oikos 98:156–162CrossRefGoogle Scholar
  48. Scheffer F, Schachtschabel P (1998) Lehrbuch der Bodenkunde. Ed. 14. Enke Verlag, StuttgartGoogle Scholar
  49. Silvertown J, Charlesworth D (2005) Introduction to plant population biology. Ed. 4. Blackwell Publishing, OxfordGoogle Scholar
  50. Stöcklin J (1992) Umwelt, Morphologie und Wachstumsmuster klonaler Pflanzen – eine Übersicht. Bot Helv 102:3–21Google Scholar
  51. van Groenendael JM, Klimeš L, Klimešová J, Hendriks RJJ (1996) Comparative ecology of clonal plants. Philos Trans, Ser B 351:1331–1339CrossRefGoogle Scholar
  52. Weppler T, Stöcklin J (2005) Variation of sexual and clonal reproduction in the alpine Geum reptans in contrasting altitudes and successional stages. Basic Appl Ecol 6:305–316CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  1. 1.Biogeography, University of BayreuthBayreuthGermany
  2. 2.Institute of Plant SciencesUniversity of BernBernSwitzerland

Personalised recommendations