Skip to main content
Log in

Environmental Constraints Influence Clonal Traits of Herbaceous Plant Communities in an Alpine Massif

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

In this paper we assess the relationship between the frequency of clonal traits and environmental factors in plant communities facing abiotic constraints imposed by an alpine environment. The study was conducted in the Vanoise Massif,inner part of the French Alps, at 1,620 to 2,800 m a.s.l. We sampled 169 communities that encounter a broad set of environmental constraints, and that were distributed over the entire Massif. For all species, we documented clonal traits using data available in the literature (e.g., the CLOPLA database), completed by other sources and our own measurements. Four traits that have previously been shown to be correlated with abiotic stress and disturbances were considered: duration of clonal integration, clonal production, spreading rate, and bud-bank size. Clonal characteristics of plant communities (aggregated traits) along the two main environmental gradients (altitude and duration of snow cover) were assessed. The distribution of clonal traits was significantly but weakly correlated with environmental factors. The duration of clonal integration and bud-bank size increased with altitude, and clonal production decreased. The duration of clonal integration and the size of the bud bank were also higher in snow beds. Scree communities were characterized by a high spreading rate and a large bud bank. The duration of integration was unexpectedly shorter in disturbance-prone habitats, and spatial mobility was unexpectedly higher in one of the most stressed habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bertness MD, Ellison AM (1987) Determinants of pattern in a New England salt marsh plant community. Ecol Monogr 57:129–147

    Article  Google Scholar 

  • Birch CPD, Hutchings MJ (1999) Clonal segmentation – The development of physiological independence within stolons of Glechoma hederacea L. (Lamiaceae). Pl Ecol 141:21–31

    Article  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Article  PubMed  Google Scholar 

  • Bonnier G (1990) Flore complète illustrée en couleurs de France, Suisse et Belgique. Belin, Paris

    Google Scholar 

  • Bornard A, Mauro Bassignana A, Bernard-Brunet C, Labonne S, Cozic P (2006) Les végétations d'alpage de la Vanoise – Description agro-écologique et gestion pastorale. Quae, Versailles

    Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Lei NF, Yu D, Dong M (2006) Differential effects of clonal integration on performance in the stoloniferous herb Duchesnea indica, as growing at two sites with different altitude. Pl Ecol 183:147–156

    Article  Google Scholar 

  • Chevenet F, Doledec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biol 31:295–309

    Article  Google Scholar 

  • Choler P, Michalet R (2002) Niche differentiation and distribution of Carex curvula along a bioclimatic gradient in the southwestern Alps. J Veg Sci 13:851–858

    Google Scholar 

  • Combroux I, Bornette G, Willby NJ, Amoros C (2001) Regenerative strategies of aquatic plants in disturbed habitats: the role of the propagule bank. Arch Hydrobiol 152:215–235

    Google Scholar 

  • Dietz H, Kohler A, Ullmann I (2002) Regeneration growth of the invasive clonal forb Rorippa austriaca (Brassicaceae) in relation to fertilization and interspecific competition. Pl Ecol 158:171–182

    Article  Google Scholar 

  • Dietz H, Steinlein T (2001) Ecological aspects of clonal growth in plants. Progr Bot 62:511–530

    Google Scholar 

  • Doak DF, Loso MG (2003) Effects of grizzly bear digging on alpine plant community structure. Arctic Antarct Alpine Res 35:421–428

    Article  Google Scholar 

  • Dolédec S, Chessel D (1994) Co-inertia analysis – an alternative method for studying species environment relationships. Freshwater Biol 31:277–294

    Article  Google Scholar 

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089

    Article  Google Scholar 

  • Eriksson O (1997) Clonal life histories and the evolution of seed recruitment. In Kroon H, Van Gronendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 211–226

    Google Scholar 

  • Eriksson O, Jakobsson A (1998) Abundance, distribution and life histories of grassland plants: a comparative study of 81 species. J Ecol 86:922–933

    Article  Google Scholar 

  • Fahrig L, Coffin, DP, Lauenroth WK, Shugart HH (1994) The advantage of long-distance clonal spreading in highly disturbed habitats. Evol Ecol 8:172–187

    Article  Google Scholar 

  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Grace JB (1993) The adaptive significance of clonal reproduction in Angiosperms – an aquatic perspective. Aquatic Bot 44:159–180

    Article  Google Scholar 

  • Halassy M, Campetella G, Canullo R, Mucina L (2005) Patterns of functional clonal traits and clonal growth modes in contrasting grasslands in the central Apennines, Italy. J Veg Sci 16:29–36

    Article  Google Scholar 

  • Hartmann H (1957) Studien über die vegetative Fortpflanzung in den Hochalpen. Jahresber Naturf Ges Graubündens 86:3–168

    Google Scholar 

  • Harvey PH, Read AF, Nee S (1995) Why ecologists need to be phylogenetically challenged. J Ecol 83:535–536

    Article  Google Scholar 

  • Humphrey LD, Pyke DA (1998) Demographic and growth responses of a guerrilla and a phalanx perennial grass in competitive mixtures. J Ecol 86:854–865

    Article  Google Scholar 

  • Hutchings MJ, Wijesinghe DK (1997) Patchy habitats, division of labour and growth dividends in clonal plants. Trends Ecol Evol 12:390–394

    Article  Google Scholar 

  • Inghe O (1989) Genet and ramet survivorship under different mortality regimes – a cellular automata model. J Theor Biol 138:257–270

    Article  Google Scholar 

  • Jonsdottir IS, Callaghan TV, Headley AD (1996) Resource dynamic within arctic clonal plants. Ecol Bull 45:53–64

    CAS  Google Scholar 

  • Jonsdottir IS, Watson M A (1997) Extensive physiological integration: an adaptative trait in resource-poor environments? In Kroon H, Van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 109–136

    Google Scholar 

  • Kammer PM, & Mohl A (2002) Factors controlling species richness in alpine plant communities: An assessment of the importance of stress and disturbance. Arctic Antarct Alpine Res 34:398–407

    Article  Google Scholar 

  • Kelly CK (1995) Thoughts on clonal integration – facing the evolutionary context. Evol Ecol 9:575–585

    Article  Google Scholar 

  • Klimeš L (2003) Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic Appl Ecol 4:317–328

    Article  Google Scholar 

  • Klimeš L, Klimešová J, Hendricks R, Van Gronendael J (1997) Clonal plant architecture: a comparative analysis of form and function. In Kroon H, Van Gronendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 1–29

    Google Scholar 

  • Klimešová J, Klimeš L (1998) CLOPLA1 (CLOnal PLAnts, version 1) – a database of clonal growth in plants of central Europe. Available at: http://www.butbn.cas.cz/klimes/. Accessed 14 Mar 2008

  • Klimešová J, Klimeš L (2003) Resprouting of herbs in disturbed habitats: is it adequately described by Bellingham-Sparrow's model? Oikos 103:225–229

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOFLOR – Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Available at: http://www.ufz.de/biolflor/index.jsp. Accessed 14 Mar 2008

  • Körner C (1999) Alpine plant life. Springer Verlag, Berlin

    Google Scholar 

  • Kotanen PM (1996) Revegetation following sail disturbance in a California meadow: The role of propagule supply. Oecologia 108:652–662

    Article  Google Scholar 

  • Kull K (1995) Growth form parameters of clonal herbs. Scripta Bot 9:106–115

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Lovett Doust L (1981) Population dynamics and local specialization in a clonal perennial (Ranunculus repens). The dynamics of ramets in contrasting habitats. J Ecol 69:743–755

    Article  Google Scholar 

  • Macek P, Lepš J (2008) Environmental correlates of growth traits of the stoloniferous plant Potentilla palustris. Evol Ecol 22:419–435

    Article  Google Scholar 

  • Noble IR, Slayter O (1980) The use of vital attributes to predict successionnal changes in plant communities subject to recurrent disturbances. Vegetatio 43:5–21

    Article  Google Scholar 

  • Oborny B (1994) Spacer length in clonal plants and the efficiency of resource capture in heterogeneous environments: a Monte Carlo simulation. Folia Geobot 29:139–158

    Article  Google Scholar 

  • Oksanen L, Ranta E (1992) Plant strategies along mountain vegetation gradients – a test of 2 theories. J Veg Sci 3:175–186

    Article  Google Scholar 

  • Onipchenko VG, Semenova GV, van der Maarel E (1998) Population strategies in severe environments: Alpine plants in the northwestern Caucasus. J Veg Sci 9:27–40

    Article  Google Scholar 

  • Ozenda P (1985) La végétation de la chaine alpine dans l'espace montagnard européen. Masson, Paris

    Google Scholar 

  • Parc National de la Vanoise (2000) Travaux scientifiques du Parc National de la Vanoise. Parc National de la Vanoise, Chambéry

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (1999) Vascular plant distribution patterns at the low-temperature limits of plant life – the alpine-nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia 29:297–325

    Google Scholar 

  • Pennings SC, Callaway RM (2000) The advantages of clonal integration under different ecological conditions: A community-wide test. Ecology 81:709–716

    Article  Google Scholar 

  • Pialot D, Chessel D, Auda Y (1984) Environmental description and multiple correspondence analysis. Compt Rend Acad Sci Paris, Sér 3, Sci Vie 298:309–314

    Google Scholar 

  • Pokarzhevskaya GA (1995) Morphological analysis of alpine communities of the north-western Caucasus. Folia Geobot 30:197–210

    Article  Google Scholar 

  • Price EAC, Marshall C (1999) Clonal plants and environmental heterogeneity – An introduction to the proceedings. Pl Ecol 141:3–7

    Article  Google Scholar 

  • R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rejmánek M, Rejmánkova E, Holzner W (2004) Species diversity of plant communities on calcareous screes: the role of intermediate disturbance. Preslia 76:207–222

    Google Scholar 

  • Sammul M, Kull K, Tamm A (2003) Clonal growth in a species-rich grassland: Results of a 20-year fertilization experiment. Folia Geobot 38:1–20

    Article  Google Scholar 

  • Song MH, Dong M, Jiang GM (2002) Importance of clonal plants and plant species diversity in the Northeast China Transect. Ecol Res 17:705–716

    Article  Google Scholar 

  • StatSoft (2005) STATISTICA (logiciel d'analyse de données). Version 7.1. Available at: http://www.statsoft.fr

  • Sutherland WJ, Stillman RA (1990) Clonal growth: insights from models. In Van Groenendael J, Kroon H (eds) Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague, pp 95–112

    Google Scholar 

  • Tamm A, Kull K, Sammul M (2001) Classifying clonal growth forms based on vegetative mobility and ramet longevity: a whole community analysis. Evol Ecol 15:383–401

    Article  Google Scholar 

  • Thioulouse J, Chessel D, Doledec S, Olivier JM (1997) ADE-4: A multivariate analysis and graphical display software. Statist Computing 7:75–83

    Article  Google Scholar 

  • Thompson FL, Eckert CG (2004) Trade-offs between sexual and clonal reproduction in an aquatic plant: experimental manipulations vs. phenotypic correlations. J Evol Biol 17:581–592

    Article  PubMed  CAS  Google Scholar 

  • Van Groenendael JM, Klimeš L, Klimešová J, Hendriks R (1996) Comparative ecology of clonal plants. Phil Trans, Ser B 351:1331–1339

    Article  Google Scholar 

  • Weiher E, Van Der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: A common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Winkler E, Fischer M (2001) The role of vegetative spread and seed dispersal for optimal life histories of clonal plants: a simulation study. Evol Ecol 15:281–301

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to J.P. Jouglet, A. Bornard, C. Brau-Nogué and M. Lambertin, who provided floristic data, and to Gilles Favier for the figure preparation. We also thank G. Loucougaray, J. Pottier, G. Kunstler, L. Klimeš, and two anonymous referees for their helpful comments on the manuscript. The experiments comply with the French current laws on vegetation protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Evette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evette, A., Bédécarrats, A. & Bornette, G. Environmental Constraints Influence Clonal Traits of Herbaceous Plant Communities in an Alpine Massif. Folia Geobot 44, 95–108 (2009). https://doi.org/10.1007/s12224-009-9039-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-009-9039-8

Keywords

Navigation