Skip to main content

Vegetation-Environment Relationships in Peatlands Dominated by Sphagnum fallax in Western Poland

Abstract

We investigated species composition and relative abundance of Sphagnum fallax dominated peatlands in relation to measured environmental variables on the basis of 26 sites in the Wielkopolska region. Most studied plots were characterized by soft waters, poor in Ca2+ but rich in nutrients, especially N-NH4 + and P-PO4 3-, with high electrolytic conductivity and high DOC (dissolved organic carbon) concentration. Six of the 19 measured variables of surface water chemistry (DOC, pH, SO4 2-, P-PO4 3-, Na+ and Ca2+) significantly explained 23% of the variation in floristic composition. In 65 vegetation plots, 107 species were observed. Cluster analysis revealed four types of vegetation in the studied mires. Sphagnum fallax was the most abundant species and formed plant communities in a wide range of habitats: in floating mats, with the plants usually adjoining the mineral basin edge (e.g. E. vaginatum, Andromeda polifolia and Ledum palustre) as well as it occupied central parts of Sphagnum lawn (e.g. Eriophorum angustifolium) and rich fen habitats (e.g. Carex rostrata or Phragmites australis). In Wielkopolska terrestrializating peatlands, four variables determine the poor-rich gradient: conductivity, DOC, SiO2 dissolved, Ca2+ and alkalinity. This study provides new data on the ecology and typology of Sphagnum peatlands in western Poland.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Banaś K (1999) Osuszanie siedlisk organogenicznych a funkcjonowanie ekosystemów jeziornych. In Barcikowski A, Boiński M, Nienartowicz A (eds) Wielofunkcyjna rola lasu. Ochrona przyrody – gospodarka – edukacja, Uniwersytet Mikołaja Kopernika, Toruń, pp 191–199

    Google Scholar 

  • Banaś K (2002) Impact of humic substances on Sphagnum denticulatum habitats. Acta Soc Bot Poloniae 71:63–69

    Google Scholar 

  • Banaś K, Gos K (2004) Effect of peat-bog reclamation on the physico-chemical characteristics of the ground water in peat. Polish J Ecol 52:69–74

    Google Scholar 

  • Batra A, Binding H, Rasmussen S, Rudolph H, Waetzig GH (2003) Efficient regeneration of Sphagnum fallax from isolated protoplasts. In Vitro Cell Developm Biol – Pl 39:147–150

    Article  Google Scholar 

  • Beltman B, Van den Broek T, Barendregt A, Grootjans MC, Bootsma AP (2001) Rehabilitation of acidified and eutrophied fens in The Netherlands: Effects of hydrologic manipulation and liming. Ecol Engin 17:21–31

    Article  Google Scholar 

  • Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biol 10:1043–1051

    Article  Google Scholar 

  • Buttler A, Grosvernier P, Matthey Y (1998) Development of Sphagnum fallax diaspores on bare peat with implications for the restoration of cut-over bogs. J Appl Ecol 35:800–810

    Google Scholar 

  • Charman DJ (2002) Peatlands and environmental change. John Wiley & Sons, Chichester

    Google Scholar 

  • Crum H (2004) A focus on peatlands and peat mosses. The University of Michigan Press, Ann Arbor, Michigan

    Google Scholar 

  • Daniels RE, Eddy A (1985) Handbook of European Sphagna. Institute of Terrestrial Ecology, Huntington

    Google Scholar 

  • Gąbka M (2005) Habitat requirements of the vegetation of humic lakes in Wielkopolska region. PhD Thesis, Adam Mickiewicz University, Poznań

  • Gąbka M, Pełechaty M, Matuszak K (2002) Phytocoenotic and floristic differentiation among the chosen lake-bog ecosystems of the Wielkopolska region. Acta Agrophysica 67:77–83

    Google Scholar 

  • Gąbka M, Owsianny PM, Sobczyński T (2004) Acidic lakes in the Wielkopolska region – physico-chemical properties of water, bottom sediments and the aquatic micro- and macrovegetation. Limnol Rev 4:81–88

    Google Scholar 

  • Gerdol R (1995) The growth dynamics of Sphagnum based on field measurements in a temperate bog and on laboratory cultures. J Ecol 83:431–437

    Article  Google Scholar 

  • Grosvernier P, Matthey Y, Buttler A (1995) Microclimate and physical properties of peat: new clues to the understanding of bog restoration processes. In Wheeler BD, Shaw SC, Fojt WS, Robertson RA (eds) Restoration of temperate wetlands. John Wiley & Sons, Chichester, pp 437–450

    Google Scholar 

  • Grosvernier P, Matthey Y, Buttler A (1997) Growth potential of three Sphagnum species in relation to water table level and peat properties with implications for their restoration in cut-over bogs. J Appl Ecol 34:471–483

    Article  Google Scholar 

  • Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279

    Article  Google Scholar 

  • Hájek M, Hekera P, Hájková P (2002) Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobot 37:205–224

    Article  Google Scholar 

  • Hájek M, Horsák M, Hájková P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect Pl Ecol Evol Syst 8:97–114

    Article  Google Scholar 

  • Hájková P, Wolf P, Hájek M (2004) Environmental factors and Carpathian spring fen vegetation: The importance of scale and temporal variation. Ann Bot Fenn 41:249–262

    Google Scholar 

  • Hermanowicz W, Dożańska W, Dojlido J, Koziorowski B (1999) Fizyczno-chemiczne badania wody i ścieków (Physico-chemical studies on water and sewage). Arkady, Warszawa

    Google Scholar 

  • Hillbricht-Ilkowska A, Dusoge K, Ejsmont-Karabin J, Jasser I, Kufel I, Ozimek T, Rybak JI, Rzepecki M, Weglenska T (1998) Long term effects of liming in a humic lake: Ecosystem processes, biodiversity, food web functioning (Lake Flosek, Masurian Lakeland, Poland). Polish J Ecol 46:347–415

    Google Scholar 

  • Hutorowicz A, Tunowski J, Zdanowski B (1999) Dystroficzne jeziora Wigierskiego Parku Narodowego – struktura, funkcjonowanie i zagrożenia. In Radwan S, Kornijow R (eds) Problemy aktywnej ochrony ekosystemów wodnych i torfowiskowych w polskich parkach narodowych. Wydawnictvo UMCS, Lublin, pp 219–230

    Google Scholar 

  • Koczorowska R (2003) Jakość powietrza atmosferycznego. In: Pułyk M, Tybiszewska E (eds) Raport o stanie środowiska w Wielkopolsce w roku 2002. WIOŚ w Poznaniu, Biblioteka Monitoringu Środowiska, Poznań, pp 139–147

    Google Scholar 

  • Kraska M, Piotrowicz R, Radziszewska R (1999) Dystrophication as the chief factor of changes in the phisico-chemical properties and vegetation of lobelian lakes of the Bory Tucholskie National Park (NW Poland). Acta Hydrobiol 41:127–135

    Google Scholar 

  • Kruk M (1997) Element retention and loss by hydrologically modified peatlands in the Mazurian Lakeland (North-Eastern Poland) II. Peatland whith eutrophicated transition bog. Polish Ecol Stud 23:3–22

    Google Scholar 

  • Kruk M (1999a) Czynniki wpływające na eutrofizację torfowisk mszarnych. In Radwan S, Kornijów R (eds) Problemy aktywnej ochrony ekosystemów wodnych i torfowiskowych w polskich parkach narodowych (Problems of active protection of aquatic and peatland ecosystems in Polish national parks). Wydawnictwo UMCS, Lublin, pp 95–100

    Google Scholar 

  • Kruk M (1999b) Peatlands – barrier or source of phosphorus inflow to lakes? Acta Hydrobiol Suppl 6:73–81

    Google Scholar 

  • Kruk M, Podbielska K (2005) Trace metal fluxes in a Sphagnum peatland – humic lake system as a consequence of drainage. Water Air Soil Pollut 168:213–233

    Article  CAS  Google Scholar 

  • Laiho R (2006) Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024

    Article  CAS  Google Scholar 

  • Lamentowicz M, Tobolski K, Mitchell EAD (2007) Land-use change causes acidification of a kettle hole peatlands in Northern Poland. The Holocene 17:1185–1196

    Article  Google Scholar 

  • Lamentowicz Ł, Lamentowicz M, Gąbka M (2008) Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands 28:164–175

    Article  Google Scholar 

  • Lamers LPM, Smolders AJP, Roelofs JGM (2002) The restoration of fens in the Netherlands. Hydrobiologia 478:107–130

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling. Elsevier, Amsterdam

    Google Scholar 

  • Limpens J, Hilde BM, Berendse F (2003) Expansion of Sphagnum fallax in bogs: striking the balance between N and P availability. J Bryol 25:83–90

    Article  Google Scholar 

  • Lorens B (2001) Porówanie metod statystycznych w badaniach stref przejścia zbiorowisk roślinnych. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin

    Google Scholar 

  • Lucassen ECHET, Smolders AJP, Roelofs JGM (2002) Potential sensitivity of mires to drought, acidification and mobilisation of heavy metals: the sediment S/(Ca + Mg) ratio as diagnostic tool. Environm Pollut 120:635–646

    CAS  Google Scholar 

  • Malmer N, Walle B (2004) Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. The Holocene 14:111–117

    Article  Google Scholar 

  • Mirek Z, Pięknoś-Mirkowa H, Zając A, Zając M (2002) Flowering plants and pteridophytes of Poland. A checklist (Krytyczna lista roślin kwiatowych i paprotników Polski). Instytut Botaniki Polskiej Akademii Nauk, Kraków

    Google Scholar 

  • Mitchell EAD, Gilbert D (2004) Vertical micro-distribution and response to nitrogen deposition of testate amoebae in Sphagnum. J Eukaryotic Microbiol 51:485–495

    Article  Google Scholar 

  • Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Siegenthaler A, Gobat JM (2002) Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. J Ecol 90:529–533

    Article  CAS  Google Scholar 

  • Moore P, Wilmott A (1976) Prehistoric forest clearance and the development of peatlands in the uplands and lowlands of Britain. In Anonymous (ed) Proceedings of the Fifth International Peat Congress, held in Poznan, Poland, September 21–25, 1976, vol 2, Wydawnictwa Czasopism Technicznych NOT, Poznań, pp 1–15

  • Nguyen-Viet H, Gilbert D, Mitchell EAD, Badot PM, Bernard N (2007) Effects of experimental lead pollution on the microbial communities associated with Sphagnum fallax (Bryophyta). Microbial Ecol 54:232–241

    Article  CAS  Google Scholar 

  • Ochyra R, Żarnowiec J, Bednarek-Ochyra H (2003) Census catalogue of Polish mosses. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow

    Google Scholar 

  • Økland RH (1990) Regional variation in SE Fennoscandian mire vegetation. Nordic J Bot 10:285–310

    Article  Google Scholar 

  • Otýpková Z, Chytrý M (2006) Effects of plot size on the ordination of vegetation samples. J Veg Sci 17:465–472

    Article  Google Scholar 

  • R Development Core Team (ed) (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  • Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Rydin H, Sjörs H, Löfroth M (1999) Mires. Acta Phytogeogr Suec 84:91–112

    Google Scholar 

  • Sjörs H (1950) On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2:241–258

    Article  Google Scholar 

  • Sjörs H, Gunnarson BE (2002) Calcium and pH in north and central Swedish mire waters. J Ecol 90:650–657

    Article  Google Scholar 

  • Szmeja J, Bazydlo E, Uruska A (2001) Role of humic substances in the determination of Sphagnum denticulatum Brid. and Myriophyllum spicatum L. habitat conditions. Polish J Ecol 49:101–113

    CAS  Google Scholar 

  • Tahvanainen T, Sallantaus T, Heikkila R, Tolonen K (2002) Spatial variation of mire surface water chamistry and vegetation in northeastern Finland. Ann Bot Fenn 39:235–251

    CAS  Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to CANOCO for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, New York

    Google Scholar 

  • Tobolski K (1998) Peatlands and marsh ecosystems. In Dobrowolski AK, Lewandowski K (eds) The strategy of wetland protection in Poland. Institute of Ecology PAS, pp 153–162

  • Tobolski K (2003) Torfowiska, na przykładzie Ziemi Świeckiej (Peatlands – an example of Świecie region). Wyd. Towarzystwo Przyjaciół Dolnej Wisły, Świecie

    Google Scholar 

  • Tuittila ES, Vasander H, Laine J (2004) Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restoration Ecol 12:483–493

    Article  Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275

    Article  Google Scholar 

  • Van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effect on community similarity. Vegetatio 39:97–114

    Article  Google Scholar 

  • Vitt DH (1990) Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Bot J Linn Soc 104:35–59

    Article  Google Scholar 

  • Vitt DH (2000) Peatlands: ecosystems dominated by bryophytes. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambrigde, pp 312–343

    Google Scholar 

  • Vitt DH, Slack NG (1984) Niche diversification of Sphagnum relative to environmental factors in northern Minnesota peatlands. Canad J Bot 62:1409–1430

    Article  Google Scholar 

  • Warner BG, Kubiw HJ, Hanf KI (1989) An anthropogenic cause for quaking mire formation in southwestern Ontario. Nature 340:380–384

    Article  Google Scholar 

  • Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203

    Article  Google Scholar 

  • Wojciechowski I (1976) Influence of the drainage basin on the eutrophication of the a-mesotrophic Lake Piaseczno and diseutrophication of the pond Lake Bikcze. Acta Hydrobiol 18:23–52

    Google Scholar 

  • Wołejko L (2002) Soligenous wetlands of north-western Poland as an environment for endangered mire species. Acta Soc Bot Poloniae 71:49–61

    Google Scholar 

  • Woś A (1994) Klimat niziny Wielkopolskiej (Climate of the Wielkopolska lowland). Wydawnictwo Nauk UAM, Poznań

    Google Scholar 

  • Woś A (1999) Klimat Polski (Climate of Poland). Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the Polish Ministry of Science and Higher Education (No. 6PO4F 03729). The work of Mariusz Lamentowicz was additionally supported by a grant from the Polish Ministry of Science and Higher Education (No. 2P04G 03228). We thank Dr. Barbara Fojcik (University of Silesia) for her help in identifying mosses. Three anonymous reviewers and Dr. Radim Hédl are acknowledged for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Gąbka.

Additional information

Plant nomenclature Mirek et al. (2002) for vascular plants, Ochyra et al. (2003) for mosses

Appendix

Appendix

Table 3 Pearson correlation coefficients between water chemistry

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gąbka, M., Lamentowicz, M. Vegetation-Environment Relationships in Peatlands Dominated by Sphagnum fallax in Western Poland. Folia Geobot 43, 413 (2008). https://doi.org/10.1007/s12224-008-9023-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12224-008-9023-8

Keywords

  • Lake
  • Mire vegetation
  • Peatlands ecology
  • Poor fen
  • Sphagnum
  • Water chemistry
  • Wetland