Abstract
Nitrogen is one of the most important nutrient sources for the growth of microalgae. We studied the effects of nitrogen starvation on the growth responses, biochemical composition, and fatty acid profile of Dunaliella tertiolecta, Phaeodactylum tricornutum, and Nannochloropsis oculata. The lack of nitrogen caused changes in carbohydrate, protein, lipid, and fatty acid composition in all examined microalgae. The carbohydrate content increased 59% in D. tertiolecta, while the lipid level increased 139% in P. tricornutum under nitrogen stress conditions compared to the control groups. Nitrogen starvation increased the oligosaccharide and polysaccharide contents of D. tertiolecta 4.1-fold and 3.6-fold, respectively. Furthermore, triacylglycerol (TAG) levels in N. oculata and P. tricornutum increased 2.3-fold and 7.4-fold, respectively. The dramatic increase in the amount of TAG is important for the use of these microalgae as raw materials in biodiesel. Nitrogen starvation increased the amounts of oligosaccharides and polysaccharides of D. tertiolecta, while increased eicosapentaenoic acid (EPA) in N. oculata and docosahexaenoic acid (DHA) content in P. tricornutum. The amount of polyunsaturated fatty acids (PUFAs), EPA, DHA, oligosaccharides, and polysaccharides in microalgal species can be increased without using the too costly nitrogen source in the culture conditions, which can reduce the most costly of living feeding.
Similar content being viewed by others
Availability of data and material
Data and material will be available from the corresponding author upon reasonable request.
References
Alonso DL, Belarbi EH, Fernández-Sevilla JM, Rodríguez-Ruiz J (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54(5):461–471. https://doi.org/10.1016/S0031-9422(00)00084-4
Andrade LM, Andrade CJ, Dias M, Nascimento C, Mendes MA (2018) Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process Technol 6(2):45–58. https://doi.org/10.15406/mojfpt.2018.06.00144
Angün P (2013) Sustainable production of biological materials for food and agricultural applications. Bilkent University (Dissertation)
Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F (2021) Improving the feasibility of aquaculture feed by using microalgae. Environ Sci Pollut Res 28(32):43234–43257. https://doi.org/10.1007/s11356-021-14989-x
Arif M, Li Y, El-Dalatony MM, Zhang C, Li X, Salama ES (2021) A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: an approach for biofuel generation and nutrients removal. Renew Energy 163:1973–1982. https://doi.org/10.1016/j.renene.2020.10.066
Avidan O, Malitsky S, Pick U (2021) Fatty acid production and direct acyl transfer through polar lipids control tag biosynthesis during nitrogen deprivation in the halotolerant alga Dunaliella tertiolecta. Mar Drugs 19(7):368–385. https://doi.org/10.3390/md19070368
Babuskin S, Krishnan KR, Saravana Babu PA, Sivarajan M, Sukumar M (2014) Functional foods enriched with marine microalga Nannochloropsis oculata as a source of ω-3 fatty acids. Food Technol Biotechnol 52(3):292–299
Baharuddin NNDE, Aziz NS, Sohif HN, Karim WAA, Al-Obaidi JR, Basiran MN (2016) Marine microalgae flocculation using plant: the case of Nannochloropsis oculata and Moringa oleifera. Pak J Bot 48(2):831–840
Bajwa K, Bishnoi NR, Kirrolia A, Selvan ST (2018) Evaluation of nutrient stress (nitrogen, phosphorus regimes) on physio-biochemical parameters of oleaginous microalgal strains and SEM study under nutrient stress. Int J Environ Sci Nat Res 10(1):1–7. https://doi.org/10.19080/IJESNR.2018.10.555776
Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17(5):304–332. https://doi.org/10.3390/md17050304
Becker EW (2013) Microalgae for human and animal nutrition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. John Wiley & Sons, West Sussex, pp 461–503
Behrens PW, Kyle DJ (1996) Microalgae as a source of fatty acids. J Food Lipids 3(4):259–272. https://doi.org/10.1111/j.1745-4522.1996.tb00073.x
Benvenuti G, Bosma R, Cuaresma M, Janssen M, Barbosa MJ, Wijffels RH (2015) Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. J Appl Phycol 27:1425–1431. https://doi.org/10.1007/s10811-014-0470-8
Blair MF, Kokabian B, Gude VG (2014) Light and growth medium effect on Chlorella vulgaris biomass production. J Environ Chem Eng 2(1):665–674. https://doi.org/10.1016/j.jece.2013.11.005
Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401
Borowitzka MA (2010) Algae oils for biofuels: chemistry, physiology, and production. In: Chon Z, Ratledge C (eds) Single cell oils, 2nd edn. AOCS Press, Illinois, pp 271–289
Borowitzka MA, Moheimani NR (2013) Algae for biofuels and energy. Springer, Dordrecht
Boussiba S, Fan L, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol 213:386–391. https://doi.org/10.1016/0076-6879(92)13140-S
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Brennan B, Regan F (2020) In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp. Sci Total Environ 748:142464. https://doi.org/10.1016/j.scitotenv.2020.142464
Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226. https://doi.org/10.1016/j.biortech.2012.08.003
Buono S, Colucci A, Angelini A, Langellotti AL, Massa M, Martello A, Fogliano V, Dibenedetto A (2016) Productivity and biochemical composition of Tetradesmus obliquus and Phaeodactylum tricornutum: effects of different cultivation approaches. J Appl Phycol 28:3179–3192. https://doi.org/10.1007/s10811-016-0876-6
Carboni S, Vignier J, Chiantore M, Tocher DR, Migaud H (2012) Effects of dietary microalgae on growth, survival and fatty acid composition of sea urchin Paracentrotus lividus throughout larval development. Aquaculture 324–325:250–258. https://doi.org/10.1016/j.aquaculture.2011.10.037
Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza A, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol-C Toxicol Pharmacol 146:60–78. https://doi.org/10.1016/j.cbpc.2006.05.007
Ceron Garcia MC, Camacho FG, Mirón AS, Sevilla JMF, Chisti Y, Molina GE (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16(5):689–694
Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102(2):1649–1655. https://doi.org/10.1016/j.biortech.2010.09.062
Cheng P, Zhou C, Chu R, Chang T, Xu J, Ruan R, Chen P, Yan X (2020) Effect of microalgae diet and culture system on the rearing of bivalve mollusks: nutritional properties and potential cost improvements. Algal Res 51:102076. https://doi.org/10.1016/j.algal.2020.102076
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
Cirik S, Gökpınar Ş (2008) Plankton bilgisi ve kültürü. Ege Üniversitesi, İzmir
Daroch M, Shao C, Liu Y, Geng S, Cheng JJ (2013) Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta. Bioresour Technol 146:192–199. https://doi.org/10.1016/j.biortech.2013.07.048
De Luca M, Pappalardo I, Limongi AR, Viviano E, Radice RP, Todisco S, Martelli G, Infantino V, Vassallo A (2021) Lipids from microalgae for cosmetic applications. Cosmetics 8(2):52. https://doi.org/10.3390/cosmetics8020052
Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101(12):4499–4507. https://doi.org/10.1016/j.biortech.2010.01.065
Dianursanti D, Sugiarto CW, Muharam Y, Susanto BH (2018) The effect of nutrient arrangement on biomass growth and lipid content of microalgae Nannochloropsis oculata in internally illuminated bubble column photobioreactor. AIP Conf Proc 2024:020034. https://doi.org/10.1063/1.5064320
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017
Duong VT, Thomas-Hall SR, Schenk PM (2015) Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia. Front Plant Sci 6:359. https://doi.org/10.3389/fpls.2015.00359
Ferro L, Gojkovic Z, Gorzsás A, Funk C (2019) Statistical methods for rapid quantification of proteins, lipids, and carbohydrates in Nordic microalgal species using ATR–FTIR spectroscopy. Molecules 24(18):3237. https://doi.org/10.3390/molecules24183237
Godoy-Hernández G, Vázquez-Flota FA (2006) Growth measurements: estimation of cell division and cell expansion. Methods Mol Biol 318:51–58. https://doi.org/10.1385/1-59259-959-1:051
Gong Y, Guo X, Wan X, Zhuo L, Jianf M (2013) Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages. J Basic Microbiol 53(1):29–36. https://doi.org/10.1002/jobm.201100487
González-Pérez BK, Rivas-Castillo AM, Valdez-Calderón A, Gayosso-Morales MA (2022) Microalgae as biostimulants: a new approach in agriculture. World J Microbiol Biotechnol 38(1):4. https://doi.org/10.1007/s11274-021-03192-2
Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals, 1st edn. Springer, Boston, pp 29–60
Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239. https://doi.org/10.1139/m62-029
Gumus ZP, Guler E, Demir B, Barlas FB, Yavuz M, Colpankan D, Senisik AM, Teksoz S, Unak P, Coskunol H, Timur S (2015) Herbal infusions of black seed and wheat germ oil: their chemical profiles, in vitro bio-investigations and effective formulations as phyto-nanoemulsions. Colloids Surfaces B Biointerfaces 133:73–80. https://doi.org/10.1016/j.colsurfb.2015.05.044
Hodgson PA, Henderson RJ, Sargent JR, Leftley JW (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture - I. The Growth Cycle J Appl Phycol 3:169–181. https://doi.org/10.1007/BF00003699
Hong SJ, Park YS, Han MA, Kim ZH, Cho BK, Lee H, Choi HK, Lee CG (2017) Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnol Bioprocess Eng 22:60–67. https://doi.org/10.1007/s12257-016-0575-9
Hulatt CJ, Wijffels RH, Bolla S, Kiron V (2017) Production of fatty acids and protein by Nannochloropsis in flat-plate photobioreactors. PLoS One 12(1):e0170440. https://doi.org/10.1371/journal.pone.0170440
Janssen JH, Wijffels RH, Barbosa MJ (2019) Lipid production in Nannochloropsis gaditana during nitrogen starvation. Biology (basel) 8(1):5. https://doi.org/10.3390/biology8010005
Jiang Y, Yoshida T, Quigg A (2012) Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol Biochem 54:70–77. https://doi.org/10.1016/j.plaphy.2012.02.012
Kaixian Q, Borowitzka MA (1993) Light and nitrogen deficiency effects on the growth and composition of Phaeodactylum tricornutum. Appl Biochem Biotechnol 38:93–103. https://doi.org/10.1007/BF02916415
Kamalanathan M, Pierangelini M, Shearman LA, Gleadow R, Beardall J (2016) Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J Appl Phycol 28:1509–1520. https://doi.org/10.1007/s10811-015-0726-y
Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32(10):521–528. https://doi.org/10.1016/j.tibtech.2014.07.004
Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, Tzimorotas D, Vuoristo KS, Horn SJ, Mounier J, Shapaval V (2017) Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Fact 16:101. https://doi.org/10.1186/s12934-017-0716-7
Larson TR, Rees TAV (1996) Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 32(3):388–393. https://doi.org/10.1111/j.0022-3646.1996.00388.x
Lee SY, Kim SH, Hyun SH, Suh HW, Hong SJ, Cho BK, Lee CG, Lee H, Choi HK (2014) Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochem 49(6):996–1004. https://doi.org/10.1016/j.procbio.2014.02.022
Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, Huo S, Cheng P, Liu J, Addy M, Chen P, Chen D, Ruan R (2019) Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol 291:121934. https://doi.org/10.1016/j.biortech.2019.121934
Li H, Chen S, Liao K, Lu Q, Zhou W (2021) Microalgae biotechnology as a promising pathway to ecofriendly aquaculture: a state-of-the-art review. J Chem Technol Biotechnol 96(4):837–852
Li-Beisson Y, Kong F, Wang P, Lee Y, Kang BH (2021) The disassembly of lipid droplets in Chlamydomonas. New Phytol 231:1359–1364. https://doi.org/10.1111/nph.17505
Lombardi AT, Wangersky PJ (1995) Particulate lipid class composition of three marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta grown in batch culture. Hydrobiologia 306:1–6. https://doi.org/10.1007/BF00007853
Longworth J, Wu D, Huete-Ortega M, Wright PC, Vaidyanathan S (2016) Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Res 18:213–224. https://doi.org/10.1016/j.algal.2016.06.015
Ma X, Liu J, Liu B, Chen T, Yang B, Chen F (2016) Physiological and biochemical changes reveal stress-associated photosynthetic carbon partitioning into triacylglycerol in the oleaginous marine alga Nannochloropsis oculata. Algal Res 16:28–35. https://doi.org/10.1016/j.algal.2016.03.005
Martin GJO, Hill DRA, Olmstead ILD, Bergamin A, Shears M, Dias DA, Kentish SE, Scales PJ, Botté CY, Callahan DL (2014) Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One 9(8):e103389. https://doi.org/10.1371/journal.pone.0103389
McKennedy J, Önenç S, Pala M, Maguire J (2016) Supercritical carbon dioxide treatment of the microalgae Nannochloropsis oculata for the production of fatty acid methyl esters. J Supercrit Fluids 116:264–270. https://doi.org/10.1016/j.supflu.2016.06.003
Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Yang JW (2014) Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155:330–333. https://doi.org/10.1016/j.biortech.2013.12.077
Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions - I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61(1):41–51. https://doi.org/10.1016/S0031-9422(02)00216-9
Moshood TD, Nawanir G, Mahmud F (2021) Microalgae biofuels production: a systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ Challenges 5:100207. https://doi.org/10.1016/j.envc.2021.100207
Movasaghi Z, Rehman S, ur Rehman DI, (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179. https://doi.org/10.1080/05704920701829043
Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, Al-Jabri H, Vatland AK, Kumar G (2021) Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol 341:1–20. https://doi.org/10.1016/j.jbiotec.2021.09.003
Nikookar K, Moradshahi A, Hosseini L (2005) Physiological responses of Dunaliella salina and Dunaliella tertiolecta to copper toxicity. Biomol Eng 22(4):141–146. https://doi.org/10.1016/j.bioeng.2005.07.001
Olofsson M, Lamela T, Nilsson E, Bergé JP, Pino VD, Uronen P, Lengrand C (2014) Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Mar Drugs 12(4):1891–1910. https://doi.org/10.3390/md12041891
Paes CRPS, Faria GR, Tinoco NAB, Castro DJFA, Barbarino E, Lourenço SO (2016) Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Lat Am J Aquat Res 44(2):275–292. https://doi.org/10.3856/vol44-issue2-fulltext-9
Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154. https://doi.org/10.1016/j.biortech.2014.01.025
Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190. https://doi.org/10.1016/j.algal.2016.06.007
Parsy A, Bidoire L, Saadouni M, Bahuaud M, Elan T, Périé F, Sambusiti C (2021) Impact of seasonal variations on Nannochloropsis oculata phototrophic productivity in an outdoor pilot scale raceway. Algal Res 58:102375. https://doi.org/10.1016/j.algal.2021.102375
Pick U, Avidan O (2017) Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliella tertiolecta. J Exp Bot 68(17):4939–4950. https://doi.org/10.1093/jxb/erx280
Qiao H, Cong C, Sun C, Li B, Wang J, Zhang L (2016) Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture 452:311–317. https://doi.org/10.1016/j.aquaculture.2015.11.011
Rasdi NW, Qin JG (2015) Effect of N: P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. J Appl Phycol 27:2221–2230. https://doi.org/10.1007/s10811-014-0495-z
Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30(6):972–979. https://doi.org/10.1111/j.0022-3646.1994.00972.x
Reitan KI, Rainuzzo JR, Øie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155(1–4):207–221. https://doi.org/10.1016/S0044-8486(97)00118-X
Rizwan M, Mujtaba G, Memon SA, Lee K (2022) Influence of salinity and nitrogen in dark on Dunaliella tertiolecta’s lipid and carbohydrate productivity. Biofuels 13(4):475–481. https://doi.org/10.1080/17597269.2020.1762275
Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112. https://doi.org/10.1002/bit.22033
Roncarati A, Meluzzi A, Acciarri S, Tallarico N, Meloti P (2004) Fatty acid composition of different microalgae strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) according to the culture phase and the carbon dioxide concentration. J World Aquac Soc 35(3):401–411. https://doi.org/10.1111/j.1749-7345.2004.tb00104.x
Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26(4):709–722. https://doi.org/10.1016/j.sjbs.2017.11.003
Sathyamoorthy G, Rajendran T (2022) Growth and biochemical profiling of marine microalgae Chlorella salina with response to nitrogen starvation. Mar Biol Res 18(5–6):307–314. https://doi.org/10.1080/17451000.2022.2131823
Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith SAG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286. https://doi.org/10.1016/j.copbio.2010.03.005
Shah MR, Lutzu GA, Alam A, Sarker P, Chowdhury MAK, Parsaeimehr A, Liang Y, Daroch M (2018) Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol 30:197–213. https://doi.org/10.1007/s10811-017-1234-z
Shan Ahamed T, Brindhadevi K, Krishnan R, Phuong TN, Alharbi SA, Chinnathambi A, Mathimani T (2022) Invivo detection of triacylglycerols through Nile red staining and quantification of fatty acids in hyper lipid producer Nannochloropsis sp. cultured under adequate nitrogen and deficient nitrogen condition. Fuel 322:124179. https://doi.org/10.1016/j.fuel.2022.124179
Shen XF, Liu JJ, Chauhan AS, Hu H, Ma LL, Lam PKS, Zeng RJ (2016) Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Res 17:261–267. https://doi.org/10.1016/j.algal.2016.05.018
Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11(1):1–15. https://doi.org/10.1186/1472-6750-11-7
Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh V, Prasad S (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol 8:515. https://doi.org/10.3389/fmicb.2017.00515
Slocombe SP, Zhang Q, Ross M, Anderson A, Thomas NJ, Lapresa Á, Rad-Menéndez C, Campbell CN, Black KD, Stanley MS, Day JG (2015) Unlocking nature’s treasure-chest: screening for oleaginous algae. Sci Rep 5(1):9844. https://doi.org/10.1038/srep09844
Song D, Xi B, Sun J (2016) Characterization of the growth, chlorophyll content and lipid accumulation in a marine microalgae Dunaliella tertiolecta under different nitrogen to phosphorus ratios. J Ocean Univ China 15:124–130. https://doi.org/10.1007/s11802-016-2797-z
Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. https://doi.org/10.1263/jbb.101.87
Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43(7):717–726. https://doi.org/10.1016/j.plaphy.2005.07.001
Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou JS, Syu RJ (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908. https://doi.org/10.1007/s10811-010-9609-4
Subhash GV, Rajvanshi M, Kumar GRKK, Sagaram US, Prasad V, Govindachary S, Dasgupta S (2022) Challenges in microalgal biofuel production: a perspective on techno economic feasibility under biorefinery stratagem. Bioresour Technol 343:126155. https://doi.org/10.1016/j.biortech.2021.126155
Tan KWM, Lin H, Shen H, Lee YK (2016) Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Sci Rep 6(1):37235. https://doi.org/10.1038/srep37235
Tebbani S, Filali R, Lopes F, Dumur D, Pareau D (2014) CO2 biofixation by microalgae: modeling, estimation and control. John Wiley & Sons, New Jersey
Torres-Tiji Y, Fields FJ, Mayfield SP (2020) Microalgae as a future food source. Biotechnol Adv 41:107536. https://doi.org/10.1016/j.biotechadv.2020.107536
Van Vooren G, Le Grand F, Legrand J, Cuiné S, Peltier G, Pruvost J (2012) Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application. Bioresour Technol 124:421–432. https://doi.org/10.1016/j.biortech.2012.08.009
Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75(3):393–397. https://doi.org/10.1007/s11746-998-0057-0
Xiao Y, Zhang J, Cui J, Feng Y, Cui Q (2013) Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour Technol 130:731–738. https://doi.org/10.1016/j.biortech.2012.11.116
Xu N, Zhang X, Fan X, Han L, Zeng C (2001) Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J Appl Phycol 13:463–469. https://doi.org/10.1023/A:1012537219198
Yaakob MA, Mohamed RMSR, Al-Gheethi A, Gokare RA, Ambati RR (2021) Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells 10(2):393. https://doi.org/10.3390/CELLS10020393
Yalcin D (2020) Growth, lipid content, and fatty acid profile of freshwater cyanobacteria Dolichospermum affine (Lemmermann) Wacklin, Hoffmann, & Komárek by using modified nutrient media. Aquac Int 28:1371–1388. https://doi.org/10.1007/s10499-020-00531-2
Yarkent Ç, Gürlek C, Oncel SS (2020) Potential of microalgal compounds in trending natural cosmetics: a review. Sustain Chem Pharm 17:100304. https://doi.org/10.1016/j.scp.2020.100304
Yodsuwan N, Sawayama S, Sirisansaneeyakul S (2017) Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agric Nat Resour 51(3):190–197. https://doi.org/10.1016/j.anres.2017.02.004
Zanella L, Vianello F (2020) Microalgae of the genus Nannochloropsis: chemical composition and functional implications for human nutrition. J Funct Foods 68:103919. https://doi.org/10.1016/j.jff.2020.103919
Zarrinmehr MJ, Farhadian O, Heyrati FP, Keramat J, Koutra E, Kornaros M, Daneshvar E (2020) Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga Isochrysis galbana. Egypt J Aquat Res 46(2):153–158. https://doi.org/10.1016/j.ejar.2019.11.003
Zhila NO, Kalacheva GS, Volova TG (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol 17:309–315. https://doi.org/10.1007/s10811-005-7212-x
Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298. https://doi.org/10.1016/j.biortech.2013.10.092
Zhu LD, Li ZH, Hiltunen E (2016) Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed Res Int 2016:8792548. https://doi.org/10.1155/2016/8792548
Acknowledgements
This study is dedicated to Prof. Dr. Şevket Gökpınar, who is no longer with us, for his valuable contributions to plankton research in Turkey.
Funding
This study is part of the PhD thesis and was supported by the Ege University Scientific Research Projects Coordination Unit (Project number: FGA-2021-22737).
Author information
Authors and Affiliations
Contributions
The experiments were designed by Pınar A. Şirin and Serpil Serdar. Laboratory studies were carried out by Pınar A. Şirin. Biochemical analyses were performed by Pınar A. Şirin and Serpil Serdar. The manuscript was written by Pınar A. Şirin. Serpil Serdar reviewed and edited the manuscript. All authors read and approved the manuscript.
Corresponding author
Ethics declarations
Ethical approval
This manuscript does not contain any studies with animals/human performed by any of the authors.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Şirin, P.A., Serdar, S. Effects of nitrogen starvation on growth and biochemical composition of some microalgae species. Folia Microbiol 69, 889–902 (2024). https://doi.org/10.1007/s12223-024-01136-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12223-024-01136-5