Skip to main content
Log in

Evaluation of the antifungal activity of α, β, and δ-damascone and inclusion complexes in β-cyclodextrin against Candida spp

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Due to the increase in fungal resistance to existing drugs, a need exists to search for new antifungals. This study aimed to evaluate the antifungal activity of α, β, and δ-damascone and inclusion complexes with β-cyclodextrin against different Candida spp. The inclusion complex of β-damascone was prepared by the co-evaporation method using three molar proportions (1:1; 2:1; 3:1 (βDA-βCD)) and analyzed using Fourier transform infrared spectroscopy (FTIR). Standard Candida albicans (CA INCQS 40,006), Candida krusei (CK INCQS 40,095), and Candida tropicalis (CT INCQS 40,042) strains were used to evaluate antifungal activity. The substances were tested individually or in association with fluconazole (FCZ). The IC50 and cell viability curve constructions were performed using the microdilution method. The minimum fungicidal concentration (MFC) was determined by the subculture method in a solid medium. The α, β, and δ-DA isolated or in combination with fluconazole (FCZ) showed significant antifungal activity. β-damascone showed effective complexation in the three molar proportions assayed; however, none of the inclusion complexes was demonstrated clinically significant effects against the fungal tested. Then, all compounds have shown promising antifungal activities; however, in vivo assays are necessary to have therapeutical application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anzaldi M, Sottofattori E, Rizzetto R et al (1999) Synthesis and antimicrobial activity of heterocyclic ionone-like derivatives. Eur J Med Chem 34:837–842

    Article  CAS  Google Scholar 

  • Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 216:S445–S451

    Article  CAS  Google Scholar 

  • Barbedo LS, Sgarbi DBG (2010) Candidíase. J Bras Doenças Sex Transm 22:22–38

    Google Scholar 

  • Belsito D, Bickers D, Bruze M et al (2007) A toxicologic and dermatologic assessment of ionones when used as fragrance ingredients. Food Chem Toxicol 45:S130

    Article  Google Scholar 

  • Campion EW, Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373:1445–1456

    Article  Google Scholar 

  • Campoy S, Adrio JL (2017) Antifungals. Biochem Pharmacol 133:86–96

    Article  CAS  Google Scholar 

  • Capelezzo AP, Mohr LC, Dalcanton F et al (2018) β-cyclodextrins as encapsulating agents of essential oils. Cyclodext A Versatile Ingred 169

  • Coutinho HDM, Costa JGM, Lima EO et al (2008a) Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 54:328–330. https://doi.org/10.1159/000151267

    Article  CAS  PubMed  Google Scholar 

  • Coutinho HDM, Costa JGM, Siqueira-Júnior JP, Lima EO (2008b) In vitro anti-staphylococcal activity of Hyptis martiusii Benth against methicillin-resistant Staphylococcus aureus: MRSA strains. Rev Bras Farmacogn 18:670–675

    Article  CAS  Google Scholar 

  • Del Toro-Sánchez CL, Ayala-Zavala JF, Machi L et al (2010) Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules. J Incl Phenom Macrocycl Chem 67:431–441

    Article  Google Scholar 

  • Deorukhkar SC, Saini S (2015) Non albicans Candida species: a review of epidemiology, pathogenicity and antifungal resistance. Pravara Med Rev 7:7–15

    Google Scholar 

  • Ernst EJ, Klepser ME, Ernst ME et al (1999) In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis 33:75–80

    Article  CAS  Google Scholar 

  • Gao S, Liu Y, Jiang J et al (2019) Physicochemical properties and fungicidal activity of inclusion complexes of fungicide chlorothalonil with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J Mol Liq 293:111513

    Article  CAS  Google Scholar 

  • Gerhäuser C, Klimo K, Hümmer W et al (2009) Identification of 3-hydroxy-β-damascone and related carotenoid-derived aroma compounds as novel potent inducers of Nrf2-mediated phase 2 response with concomitant anti-inflammatory activity. Mol Nutr Food Res 53:1237–1244

    Article  Google Scholar 

  • Gliszczyńska A, Gładkowski W, Dancewicz K et al (2016) Transformation of β-damascone to (+)-(S)-4-hydroxy-β-damascone by fungal strains and its evaluation as a potential insecticide against aphids Myzus persicae and lesser mealworm Alphitobius diaperinus Panzer. Catal Commun 80:39–43

    Article  Google Scholar 

  • Hadian Z, Maleki M, Abdi K et al (2018) Preparation and characterization of nanoparticle β-cyclodextrin: geraniol inclusion complexes. Iran J Pharm Res IJPR 17:39

    CAS  PubMed  Google Scholar 

  • Herrero M, Ibanez E, Cifuentes A et al (2006) Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. J Food Prot 69:2471–2477

    Article  CAS  Google Scholar 

  • Javadpour MM, Juban MM, Lo WCJ et al (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113. https://doi.org/10.1021/jm9509410

    Article  CAS  PubMed  Google Scholar 

  • Jimtaisong A, Saewan N (2017) Inclusion complex of plai oil and β-cyclodextrin. In: Applied Mechanics and Materials. Trans Tech Publ, pp 47–53

  • Kothavade RJ, Kura MM, Valand AG, Panthaki MH (2010) Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol 59:873–880

    Article  CAS  Google Scholar 

  • Kullberg BJ, Arendrup MC (2016) Invasive candidiasis. N Engl J Med 374:794

    PubMed  Google Scholar 

  • Lalko J, Lapczynski A, McGinty D et al (2007) Fragrance material review on delta-damascone. Food Chem Toxicol 45:S205–S210

    Article  Google Scholar 

  • Lapczynski A, Lalko J, McGinty D et al (2007) Fragrance material review on α-damascone. Food Chem Toxicol 45:S179–S187

    Article  Google Scholar 

  • Lindner K, Szejtli J (1981) Food flavouring with fJ-cyclodextrin-complexed flavour substances. Acta Alimeruaria 10:175–186

    CAS  Google Scholar 

  • Litzenburger M, Bernhardt R (2016) Selective oxidation of carotenoid-derived aroma compounds by CYP260B1 and CYP267B1 from Sorangium cellulosum So ce56. Appl Microbiol Biotechnol 100:4447–4457

    Article  CAS  Google Scholar 

  • Lopes Colombo A, Guimarães T (2003) Epidemiologia das infecções hematogênicas por Candida spp Epidemiology of hematogenous infections due to Candida spp. Rev Soc Bras Med Trop 36:599–607

    Article  Google Scholar 

  • Marques CS, Carvalho SG, Bertoli LD et al (2019) β-Cyclodextrin inclusion complexes with essential oils: obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res Int 119:499–509

    Article  CAS  Google Scholar 

  • Miranda JCD, Martins TEA, Veiga F, Ferraz HG (2011) Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. Brazilian J Pharm Sci 47:665–681

    Article  Google Scholar 

  • Misharina TA, Samusenko AL, Belyaeva NV (2002) Gas chromatographic and IR spectroscopic characteristics of tri-and tetramethylcyclohexenyl butenyl ketones. Russ Chem Bull 51:1684–1688

    Article  CAS  Google Scholar 

  • Morais-Braga MFB, Sales DL, Carneiro JNP et al (2016) Psidium guajava L. and Psidium brownianum Mart ex DC.: chemical composition and anti - Candida effect in association with fluconazole. Microb Pathog 95:200–207. https://doi.org/10.1016/j.micpath.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  • Moran EJ, Easterday OD, Boser BL (1980) Acute oral toxicity of selected flavour chemicals. Drug Chem Toxicol 3:249–258

    Article  CAS  Google Scholar 

  • Mueller D, Triebel S, Rudakovski O, Richling E (2013) Influence of triterpenoids present in apple peel on inflammatory gene expression associated with inflammatory bowel disease (IBD). Food Chem 139:339–346

    Article  CAS  Google Scholar 

  • Murugesh J, Annigeri RG, Mangala GK et al (2019) Evaluation of the antifungal efficacy of different concentrations of Curcuma longa on Candida albicans: an in vitro study. J Oral Maxillofac Pathol JOMFP 23:305

    Article  Google Scholar 

  • Rachmawati H, Edityaningrum CA, Mauludin R (2013) Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 14:1303–1312

    Article  CAS  Google Scholar 

  • Sampaio ADG, Gontijo AVL, Lima GDM et al (2021) Ellagic acid–cyclodextrin complexes for the treatment of oral candidiasis. Molecules 26:505. https://doi.org/10.3390/molecules26020505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Songkro S, Hayook N, Jaisawang J et al (2012) Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J Incl Phenom Macrocycl Chem 72:339–355

    Article  CAS  Google Scholar 

  • Souza EL, Stamford TLM, Lima EO, Trajano VN (2007) Effectiveness of Origanum vulgare L. essential oil to inhibit the growth of food spoiling yeasts. Food Control 18:409–413. https://doi.org/10.1016/j.foodcont.2005.11.008

    Article  CAS  Google Scholar 

  • Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int 2013

  • Surburg H, Panten J (2016) Individual Fragrance and flavor materials

  • Tao F, Hill LE, Peng Y, Gomes CL (2013) Characterization of ß-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. In: 2013 Kansas City, Missouri, July 21-July 24, 2013. American Society of Agricultural and Biological Engineers, p 1

  • Uyar T, Hacaloglu J, Besenbacher F (2009) Electrospun polystyrene fibers containing high temperature stable volatile fragrance/flavor facilitated by cyclodextrin inclusion complexes. React Funct Polym 69:145–150

    Article  CAS  Google Scholar 

  • Vieira AJH, Santos JI (2017) Mecanismos de resistência de Candida albicans aos antifúngicos anfotericina B, fluconazol e caspofungina. RBAC 49:235–239

    Article  Google Scholar 

  • Wink M (2010) Annual plant reviews, functions and biotechnology of plant secondary metabolites. John Wiley & Sons

    Book  Google Scholar 

Download references

Acknowledgements

Laboratory of Pharmacology and Molecular Chemistry (Laboratório de Farmacologia e Química Molecular; LFQM), Cariri Applied Mycology Laboratory (Laboratório de Micologia Aplicada do Cariri; LMAC), Laboratory of Microbiology and Molecular Biology (Laboratório de Microbiologia e Biologia Molecular; LMBM), and the Laboratory of Simulations and Molecular Spectroscopy (Laboratório de Simulações e Espectroscopia Molecular; LaSEMol) from the Regional University of Cariri (Universidade Regional do Cariri; URCA), for the space to carry out the work.

Funding

This work was supported by Cearense Foundation to Support Scientific and Technological Development (FUNCAP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES—Finance Code 001), National Council for Scientific and Technological Development (CNPq) and Financier of Studies and Projects (FINEP). This article is a contribution of the National Institute of Science and Technology - Ethnobiology, Bioprospecting and Nature Conservation/CNPq/FACEPE.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, I.R.A.d.M., H.D.M.C., M.F.B.M.B., D.S.J F.E.A.M., and A.M.T.; methodology, M.R.C.d.O., M.G.d.L.S., A.T.L.d.S., B.G.d.C., R.H.S.d.C; validation, F.L.A.B; formal analysis, A.T.L.d.S; writing-review and editing, M.R.C.d.O and A.O.B.P.B.M; supervision, I.R.A.d.M, H.D.M.C., and M.F.B.M.B. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Henrique Douglas Melo Coutinho or Irwin Rose Alencar de Menezes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.R.C., de Lima Silva, M.G., dos Santos, A.T.L. et al. Evaluation of the antifungal activity of α, β, and δ-damascone and inclusion complexes in β-cyclodextrin against Candida spp. Folia Microbiol 67, 447–457 (2022). https://doi.org/10.1007/s12223-021-00945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-021-00945-2

Navigation