Characterisation of a potential probiotic strain Paracoccus marcusii KGP and its application in whey bioremediation

Abstract

Whey, the main by-product obtained from the manufacture of cheese, which contains a very high organic load (mainly due to the lactose content), is not easily degradable and creates concern over environmental issues. Hydrolysis of lactose present in whey and conversion of whey lactose into valuable products such as bioethanol, sweet syrup, and animal feed offers the possibility of whey bioremediation. The increasing need for bioremediation in the dairy industry has compelled researchers to search for a novel source of β-galactosidase with diverse properties. In the present study, the bacterium Paracoccus marcusii KGP producing β-galactosidase was subjected to morphological, biochemical, and probiotic characterisation. The bacterial isolate was found to be non-pathogenic and resistant to low pH (3 and 4), bile salts (0.2%), salt (10%), pepsin (at pH 3), and pancreatin (at pH 8). Further characterisation revealed that the bacteria have a good auto-aggregation ability (40% at 24 h), higher hydrophobicity (chloroform-60%, xylene-50%, and ethyl acetate-40%) and a broad spectrum of antibiotic susceptibility. The highest growth of P. marcusii KGP was achieved at pH 7 and 28 °C, and the yeast extract, galactose, and MgSO4 were the best for the growth of the bacterial cells. The bacterium KGP was able to utilise whey as a substrate for its growth with good β-galactosidase production potential. Furthermore, the β-galactosidase extracted from the isolate KGP could hydrolyse 47% whey lactose efficiently at 50 °C. The study thus reveals the potential application of β-galactosidase from P. marcusii KGP in whey bioremediation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abouloifa H, Rokni Y, Bellaouchi R et al (2020) Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Antimicrob 12:683–696. https://doi.org/10.1007/s12602-019-09543-8

    CAS  Article  PubMed  Google Scholar 

  2. Alikkunju AP, Sainjan N, Silvester R et al (2016) Screening and characterization of cold-active β-galactosidase producing psychrotrophic Enterobacter ludwigii from the sediments of Arctic Fjord. Appl Biochem Biotechnol 180:477–490. https://doi.org/10.1007/s12010-016-2111-y

    CAS  Article  PubMed  Google Scholar 

  3. Alikunju AP, Joy S, Rahiman M et al (2018) A statistical approach to optimize cold active β-galactosidase production by an Arctic sediment pscychrotrophic bacteria, Enterobacter ludwigii (MCC 3423) in cheese whey. Catal Letters 148:712–724. https://doi.org/10.1007/s10562-017-2257-4

    CAS  Article  Google Scholar 

  4. Antoniou E, Fodelianakis S, Korkakaki E, Kalogerakis N (2015) Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol 6:1–14. https://doi.org/10.3389/fmicb.2015.00274

    Article  Google Scholar 

  5. Begley M, Gahan CGM, Hill C (2002) Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68:6005–6012. https://doi.org/10.1128/AEM.68.12.6005-6012.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bentahar J, Doyen A, Beaulieu L, Deschênes JS (2019) Acid whey permeate: an alternative growth medium for microalgae Tetradesmus obliquus and production of β-galactosidase. Algal Res 41. https://doi.org/10.1016/j.algal.2019.101559

  7. Berkes E, Liao YH, Neef D et al (2020) Potentiated in vitro probiotic activities of Lactobacillus fermentum LfQi6 biofilm biomass versus planktonic culture. Probiotics Antimicro Prot 12:1097–1114. https://doi.org/10.1007/s12602-019-09624-8

    CAS  Article  Google Scholar 

  8. Bhakta JN, Ohnishi K, Munekage Y et al (2012) Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J Appl Microbiol 112:1193–1206. https://doi.org/10.1111/j.1365-2672.2012.05284.x

    CAS  Article  PubMed  Google Scholar 

  9. Bosso A, Iglecias Setti AC, Tomal AB et al (2019) Substrate consumption and beta-galactosidase production by Saccharomyces fragilis IZ 275 grown in cheese whey as a function of cell growth rate. Biocatal Agric Biotechnol 21. https://doi.org/10.1016/j.bcab.2019.101335

  10. Cardoso BB, Silvério SC, Abrunhosa L et al (2017) β-Galactosidase from Aspergillus lacticoffeatus: a promising biocatalyst for the synthesis of novel prebiotics. Int J Food Microbiol 257:67–74. https://doi.org/10.1016/j.ijfoodmicro.2017.06.013

    CAS  Article  PubMed  Google Scholar 

  11. Chiba S, Yamada M, Isobe K (2015) Novel acidophilic β-galactosidase with high activity at extremely acidic pH region from Teratosphaeria acidotherma AIU BGA-1. J Biosci Bioeng 120:263–267. https://doi.org/10.1016/j.jbiosc.2015.01.015

    CAS  Article  PubMed  Google Scholar 

  12. Conradie TA, Pieterse E, Jacobs K (2018) Application of Paracoccus marcusii as a potential feed additive for laying hens. Poult Sci 97:986–994. https://doi.org/10.3382/ps/pex377

    CAS  Article  PubMed  Google Scholar 

  13. Costa E, Teixidó N, Usall J et al (2002) The effect of nitrogen and carbon sources on growth of the biocontrol agent Pantoea agglomerans strain CPA-2. Lett Appl Microbiol 35.https://doi.org/10.1046/j.1472-765X.2002.01133.x

  14. Das B, Roy AP, Bhattacharjee S et al (2015) Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. Ecotoxicol Environ Saf 121:244–252. https://doi.org/10.1016/j.ecoenv.2015.03.024

    CAS  Article  PubMed  Google Scholar 

  15. El-Baz AF, El-Enshasy HA, Shetaia YM et al (2018) Semi-industrial scale production of a new yeast with probiotic traits, Cryptococcus sp. YMHS, isolated from the Red Sea. Probiotics Antimicro Prot 10:77–88. https://doi.org/10.1007/s12602-017-9291-9

    CAS  Article  Google Scholar 

  16. Feng Y, Kumar R, Ravcheev DA, Zhang H (2015) Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism. Microbiologyopen 4:644–659. https://doi.org/10.1002/mbo3.270

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Fonseca HC, de Sousa MD, Ramos CL et al (2020) Probiotic properties of lactobacilli and their ability to inhibit the adhesion of enteropathogenic bacteria to Caco-2 and HT-29 cells. Probiotics Antimicro Prot. https://doi.org/10.1007/s12602-020-09659-2

    Article  Google Scholar 

  18. Geiger B, Nguyen HM, Wenig S et al (2016) From by-product to valuable components: efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochem Eng J 116:45–53. https://doi.org/10.1016/j.bej.2016.04.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Geng Y, Deng Y, Chen F et al (2015) Biodegradation of isopropanol by a solvent-tolerant Paracoccus denitrificans strain. Prep Biochem Biotechnol 45:491–499. https://doi.org/10.1080/10826068.2014.923452

    CAS  Article  PubMed  Google Scholar 

  20. Gilliland SE, Staley TE, Bush LJ (1984) Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci 67:3045–3051. https://doi.org/10.3168/jds.S0022-0302(84)81670-7

    CAS  Article  PubMed  Google Scholar 

  21. Gupta PK, Mital BK, Garg SK (1996) Characterization of Lactobacillus acidophilus strains for use as dietary adjunct. Int J Food Microbiol 29:105–109. https://doi.org/10.1016/0168-1605(95)00014-3

    CAS  Article  PubMed  Google Scholar 

  22. Haider T, Husain Q (2009) Hydrolysis of milk/whey lactose by β galactosidase: a comparative study of stirred batch process and packed bed reactor prepared with calcium alginate entrapped enzyme. Chem Eng Process Process Intensif 48:576–580. https://doi.org/10.1016/j.cep.2008.02.007

    CAS  Article  Google Scholar 

  23. Han YR, Youn SY, Ji GE, Park MS (2014) Production of α- and β-galactosidases from Bifidobacterium longum subsp. longum RD47. J Microbiol Biotechnol 24:675–682. https://doi.org/10.4014/jmb.1402.02037

    CAS  Article  PubMed  Google Scholar 

  24. Harker M, Hirschberg J, Oren A (1998) Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int J Syst Bacteriol 48:543–548

    Article  Google Scholar 

  25. Hosseini SV, Arlindo S, Böhme K et al (2009) Molecular and probiotic characterization of bacteriocin-producing Enterococcus faecium strains isolated from nonfermented animal foods. J Appl Microbiol 107:1392–1403. https://doi.org/10.1111/j.1365-2672.2009.04327.x

    CAS  Article  PubMed  Google Scholar 

  26. Huang Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91:253–260. https://doi.org/10.1016/j.ijfoodmicro.2003.07.001

    Article  PubMed  Google Scholar 

  27. Husain Q (2010) β Galactosidases and their potential applications: a review. Crit Rev Biotechnol 30:41–62. https://doi.org/10.3109/07388550903330497

    CAS  Article  PubMed  Google Scholar 

  28. Jinendiran S, Boopathi S, Sivakumar N, Selvakumar G (2019) Functional characterization of probiotic potential of novel pigmented bacterial strains for aquaculture applications. Probiotics Antimicro Prot 11:186–197. https://doi.org/10.1007/s12602-017-9353-z

    CAS  Article  Google Scholar 

  29. Kalathinathan P, Kodiveri Muthukaliannan G (2020) A statistical approach for enhanced production of β-galactosidase from Paracoccus sp. and synthesis of galacto-oligosaccharides. Folia Microbiol (Praha) 65. https://doi.org/10.1007/s12223-020-00791-8

  30. Kareb O, Aïder M (2019) Whey and its derivatives for probiotics, prebiotics, synbiotics, and functional foods: a critical review. Probiotics Antimicro Prot 11:348–369. https://doi.org/10.1007/s12602-018-9427-6

    CAS  Article  Google Scholar 

  31. Kumara SS, Bashisht A, Venkateswaran G et al (2019) Characterization of novel Lactobacillus fermentum from curd samples of indigenous cows from Malnad region, Karnataka, for their aflatoxin B1 binding and probiotic properties. Probiotics Antimicro Prot 11:1100–1109

    CAS  Article  Google Scholar 

  32. Lányi B (1988) Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67. https://doi.org/10.1016/S0580-9517(08)70407-0

    Article  Google Scholar 

  33. Lee JH, Kim YS, Choi TJ et al (2004) Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijs.0.63146-0

  34. Lin P, Yan ZF, Won KH et al (2017) Paracoccus hibiscisoli sp. nov., isolated from the rhizosphere of Mugunghwa (Hibiscus syriacus). Int J Syst Evol Microbiol 67. https://doi.org/10.1099/ijsem.0.001990

  35. Liu P, Xie J, Liu J, Ouyang J (2019) A novel thermostable β-galactosidase from Bacillus coagulans with excellent hydrolysis ability for lactose in whey. J Dairy Sci 102:9740–9748. https://doi.org/10.3168/jds.2019-16654

    CAS  Article  PubMed  Google Scholar 

  36. Mlichová Z, Rosenberg M (2006) Current trends of β-galactosidase application in food technology. J Food Nutr Res 45:47–54

    Google Scholar 

  37. Pabari K, Pithva S, Kothari C et al (2020) Evaluation of probiotic properties and prebiotic utilization potential of Weissella paramesenteroides isolated from fruits. Probiotics Antimicro Prot 12:1126–1138. https://doi.org/10.1007/s12602-019-09630-w

    CAS  Article  Google Scholar 

  38. Padilla B, Frau F, Ruiz-Matute AI et al (2015) Production of lactulose oligosaccharides by isomerisation of transgalactosylated cheese whey permeate obtained by β-galactosidases from dairy Kluyveromyces. J Dairy Res 82:356–364. https://doi.org/10.1017/S0022029915000217

    CAS  Article  PubMed  Google Scholar 

  39. Pooja KK, Gomathinayagam S, Gothandam KM (2021) Draft genome sequence of a highly pigmented bacterium Paracoccus marcusii KGP capable of producing galacto-oligosaccharides synthesising enzyme. Curr Microbiol. https://doi.org/10.1007/s00284-020-02326-3

    Article  PubMed  Google Scholar 

  40. Pulicherla KK, Kumar PS, Manideep K et al (2013) Statistical approach for the enhanced production of cold-active β-galactosidase from Thalassospira frigidphilosprofundus: a novel marine psychrophile from deep waters of Bay of Bengal. Prep Biochem Biotechnol 43:766–780. https://doi.org/10.1080/10826068.2013.773341

    CAS  Article  PubMed  Google Scholar 

  41. Sain A, Dubey V, Ghosh AR (2018) Enterococcus faecium strain AVG44—a potential probiotic isolated from human faecal sample. Int J Pharma Bio Sci 9:85–93. https://doi.org/10.1016/B978-0-12-814625-5.00006-6

    CAS  Article  Google Scholar 

  42. Sain A, Jayaprakash NS (2021) Draft Genome sequence data of a T7like phage 3A _ 8767 isolated from wastewater of a butcher house near Palar River Draft genome sequence data of a T7like phage 3A _ 8767 isolated from wastewater of a butcher house near Palar river. 0–4. https://doi.org/10.1016/j.dib.2020.105446

  43. Saqib S, Akram A, Halim SA, Tassaduq R (2017) Sources of β-galactosidase and its applications in food industry. 3 Biotech 7:1–7. https://doi.org/10.1007/s13205-017-0645-5

  44. Sharifuzzaman SM, Rahman H, Austin DA, Austin B (2018) Properties of probiotics Kocuria SM1 and Rhodococcus SM2 isolated from fish guts. Probiotics Antimicro Prot 10:534–542. https://doi.org/10.1007/s12602-017-9290-x

    CAS  Article  Google Scholar 

  45. Shivangi S, Devi PB, Ragul K, Shetty PH (2020) Probiotic potential of Bacillus strains isolated from an acidic fermented food Idli

  46. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Methods for General and Molecular Bacteriology. American Society for Microbiology, p 791

  47. Tsubokura A, Yoneda H, Mizuta H (1999) Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 49. https://doi.org/10.1099/00207713-49-1-277

  48. Vincent V, Aghajari N, Pollet N et al (2013) The acid tolerant and cold-active β-galactosidase from Lactococcus lactis strain is an attractive biocatalyst for lactose hydrolysis. Antonie Van Leeuwenhoek, Int J Gen Mol Microbiol 103:701–712. https://doi.org/10.1007/s10482-012-9852-6

    CAS  Article  Google Scholar 

  49. Wang Y, Horlamus F, Henkel M et al (2019) Growth of engineered Pseudomonas putida KT2440 on glucose, xylose, and arabinose: hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy 11. https://doi.org/10.1111/gcbb.12590

  50. Xu JL, Zhao J, Wang LF et al (2012) Enhanced β-galactosidase production from whey powder by a mutant of the psychrotolerant yeast Guehomyces pullulans 17–1 for hydrolysis of lactose. Appl Biochem Biotechnol 166:599–611. https://doi.org/10.1007/s12010-011-9451-4

    CAS  Article  PubMed  Google Scholar 

  51. Yan F, Tian X, Dong S et al (2014) Growth performance, immune response, and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus fed a supplementary diet of the potential probiotic Paracoccus marcusii DB11. Aquaculture 420–421:105–111. https://doi.org/10.1016/j.aquaculture.2013.10.045

    CAS  Article  Google Scholar 

  52. Yang G, Tian X, Dong S et al (2015) Effects of dietary Bacillus cereus G19, B. cereus BC-01, and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression of immune-related genes in coelomocytes and intestine of the sea cucumber (Apostichopus japonicus Selenka). Fish Shellfish Immunol 45:800–807. https://doi.org/10.1016/j.fsi.2015.05.032

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Vellore Institute of Technology for providing the necessary facilities to carry out the present research work. The authors also like to acknowledge Dr. Krishnakanth Pulicherla, Scientist D, DST, and Mr. Avtar Sain for assisting in the project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gothandam Kodiveri Muthukaliannan.

Ethics declarations

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 799 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalathinathan, P., Kodiveri Muthukaliannan, G. Characterisation of a potential probiotic strain Paracoccus marcusii KGP and its application in whey bioremediation. Folia Microbiol (2021). https://doi.org/10.1007/s12223-021-00886-w

Download citation