Evaluation of microbiological air parameters and the fungal community involved in the potential risks of biodeterioration in a cultural heritage of humanity, Ouro Preto, Brazil

Abstract

The research of the microbiological air quality of a building considered a human historical and cultural heritage site by the United Nations Educational, Scientific, and Cultural Organization is fundamental for preventive conservation action, mainly because it identifies cultivable fungal species around the collections and suggests the appropriate treatment choice. This study investigated the air microbiological parameters inside the Nossa Senhora da Conceição Church and identified the population of airborne fungi. Sixty filamentous fungal isolates were detected with ten distinct taxa. The counts of colony forming units (CFUs) performed at 10 different points were in accordance with Brazilian legislation. In addition, the presence of two fungal species was detected colonizing artworks covered with gold leaves: Cladosporium cladosporioides and Aspergillus versicolor. Air quality monitoring inside the church was in accordance with the required Brazilian legislation standards. The composition of the filamentous fungal community included the presence of human fungal pathogens; for this reason, the use of personal protective equipment was recommended during the restoration work. Thus, characterization of the air microbiological parameters helps to preserve not only the building’s collection, but also the health of the faithful, conservators-restorers, tourists, and researchers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Albertano P, Urzì C (1999) Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in Roman hypogea. Microb Ecol 38:244–252. https://doi.org/10.1007/s002489900174

    CAS  Article  PubMed  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. ANVISA (2003) Agência Nacional de Vigilância Sanitária. Diário Oficial da União. Resolução número 899, de 29 de maio de 2003. http://portal.anvisa.gov.br. Accessed 14 may 2020

  4. Awad AHA, Saeed Y, Shakour AA, Abdellatif NM, Ibrahim YH, Elghanam M, Elwakeel F (2020) Indoor air fungal pollution of a historical museum, Egypt: a case study. Aerobiologia 36:197–209. https://doi.org/10.1007/s10453-019-09623-w

    Article  Google Scholar 

  5. Barrulas RV, Nunes AD, Sequeira SO, Casimiro MH, Corvo MC (2020) Cleaning fungal stains on paper with hydrogels: the effect of pH control. Int Biodeter Biodegr 152:104996. https://doi.org/10.1016/j.ibiod.2020.104996

    CAS  Article  Google Scholar 

  6. Bidochka MJ, Menzies FV, Kamp AM (2002) Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch Microbiol 178(6):531–537. https://doi.org/10.1007/s00203-002-0490-7

    CAS  Article  PubMed  Google Scholar 

  7. Boniek D, Bonadio L, Abreu CS, Santos AFB, Resende-Sotianoff MA (2018) Fungal bioprospecting and antifungal treatment on a deteriorated Brazilian contemporary painting. Lett Appl Microbiol 67(4):337–342. https://doi.org/10.1111/lam.13054

    CAS  Article  PubMed  Google Scholar 

  8. Boniek D, Damaceno QS, Abreu CS, Mendes IC, Santos AFB, Resende-Stoianoff MA (2019) Filamentous fungi associated with Brazilian stone samples: structure of the fungal community, diversity indexes, and ecological analysis. Mycol Prog 18:565–576. https://doi.org/10.1007/s11557-019-01470-w

    Article  Google Scholar 

  9. Bosch-Roig P, Allegue H, Bosch, I (2019) Granite pavement nitrate desalination: traditional methods vs. biocleaning methods. Sustainability 11(15):4227. https://doi.org/10.3390/su11154227

  10. Bosch-Roig P, Lustrato G, Zanardini E, Ranalli G (2014) Biocleaning of cultural heritage stone surfaces and frescoes: which delivery system can be the most appropriate? Ann Microbiol 65:1227–1241. https://doi.org/10.1007/s13213-014-0938-4

    Article  Google Scholar 

  11. Bradner JR, Gillings M, Nevalainen KMH (1999) Qualitative assessment of hydrolytic activities in Antarctic microfungi grown at different temperatures on solid media. World J Microb Biot 15:143–145. https://doi.org/10.1023/A:1008855406319

    CAS  Article  Google Scholar 

  12. Branco HDC, Santos AFB (1994) Object identification. In: Gudrun M. Herkenrath (ed) IDEAS-investigations into devices against environmental attack on stones. Brazil 1:45–61

  13. Capodicasa S, Fedi S, Porcelli AM, Zannoni D (2010) The microbial community dwelling on a biodeteriorated 16th century painting. Int Biodeterior Biodegrad 64(8):727–733. https://doi.org/10.1016/j.ibiod.2010.08.006

    CAS  Article  Google Scholar 

  14. Carvalho HP, Mesquita N, Trovão J, Rodríguez SF, Pinheiro AC, Gomes V, Alcoforado A, Gil F et al (2018) Fungal contamination of paintings and wooden sculptures inside the storage room of a museum: are current norms and reference values adequate? J Cult Herit 34:268–276. https://doi.org/10.1016/j.culher.2018.05.001

    Article  Google Scholar 

  15. Carvalho HP, Sequeira SO, Pinho D, Trovão J, da Costa RMF, Egas C, Macedo MF, Portugal A (2019) Combining an innovative non-invasive sampling method and high-throughput sequencing to characterize fungal communities on a canvas painting. Int Biodeterior Biodegrad 145:104816. https://doi.org/10.1016/j.ibiod.2019.104816

    CAS  Article  Google Scholar 

  16. Caselli E, Pancaldi S, Baldisserotto C, Petrucci F, Impallaria A, Volpe L, Dáccolti M, Soffritti I et al (2018) Characterization of biodegradation in a 17th century easel painting and potential for a biological approach. PLoS ONE 13(12):e0207630. https://doi.org/10.1371/journal.pone.0207630

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Chou H, Tam MF, Lee LH, Chiang CH, Tai HY, Panzani RC, Shen HD (2008) Vacuolar serine protease is a major allergen of Cladosporium cladosporioides. Int Arch Allergy Immunol 146:277–286. https://doi.org/10.1159/000121462

    CAS  Article  PubMed  Google Scholar 

  18. Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt and exploit with the help of melanin. Curr Opin Microbiol 11(6):525–531. https://doi.org/10.1016/j.mib.2008.09.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Estrada AR, Torres EM, Vázquez Marco AA, Piñero Jorge LH, Lucio Marco AG, Martínez SMS (2015) Fungal spores in four catholic churches in the metropolitan area of Monterrey, Nuevo León State, Mexico - first study. Ann Agric Environ Med 22(2):221–226. https://doi.org/10.5604/12321966.1152069

    Article  PubMed  Google Scholar 

  20. Feng MG, Poprawski TJ, Khachatourians GG (2008) Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: status. Biocontrol Sci Techn 4:3–34. https://doi.org/10.1080/09583159409355309

    Article  Google Scholar 

  21. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotec 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001

    Article  Google Scholar 

  22. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  Article  Google Scholar 

  23. Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Alves TMA, Junior PAS et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7(7):1434–1451. https://doi.org/10.1038/ismej.2013.77

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Gutarowska B (2010) Metabolic activity of moulds as a factor of building materials biodegradation. Pol J Microbiol 59(2):19–124

    Article  Google Scholar 

  25. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  26. Ilieș DC, Caciora T, Herman GV, Ilieș A, Ropa M, Baias Ș (2020). Geohazards affecting cultural heritage monuments. A complex case study from Romania. Geoj Tour Geosites 31(3):1103–1112. https://doi.org/10.30892/gtg.31323-546

  27. Joseph E, Cario S, Simon A, Wörle M, Mazzeo R, Junier P, Job D (2012) Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana. Front Microbiol 2:1–8. https://doi.org/10.3389/fmicb.2011.00270

    Article  Google Scholar 

  28. Karpovich-Tate N, Rebrikova NL (1990) Microbial communities on damaged frescoes and building materials in the Cathedral of the Nativity of the Virgin in the Pafnutii-Borovskii Monastery, Russia. Int Biodeterior 27:281–296

    Article  Google Scholar 

  29. Krysinska E, Dutkiewicz J (2000) Aspergillus candidus: a respiratory hazard associated with grain dust. Ann Agric Environ Med 7(2):101–109 (PMID: 11153039)

    Google Scholar 

  30. Kwaśna H, Kuberka A (2020) Fungi in public heritage buildings in Poland. Pol J Environ Stud 29:1–12. https://doi.org/10.15244/pjoes/112213

  31. Li Y, Huang Z, Petropoulos E, Ma Y, Shen Y (2020) Humidity governs the wall-inhabiting fungal community composition in a 1600-year tomb of Emperor Yang. Sci Rep 10:8421. https://doi.org/10.1038/s41598-020-65478-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Mang SM, Scrano L, Camele I (2020) Preliminary studies on fungal contamination of two rupestrian churches from Matera (Southern Italy). Sustainability 12:6988

    CAS  Article  Google Scholar 

  33. Medrela-Kuder E (2003) Seasonal variations in the occurrence of culturable airborne fungi in outdoor and indoor air in Craców. Int Biodeterior Biodegrad 52:203–205

    Article  Google Scholar 

  34. Muñoz C, Hidalgo C, Zapata M, Jeison D, Riqelme C, Rivas M (2014) Use of cellulolytic marine bacteria for enzymatic treatment in microalgal biogas production. Appl Environ Microbiol 80:4199–4206. https://doi.org/10.1128/AEM.00827-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Naji KM, Abdullah QY, Al-Zagri AQ, Alghalibi SM (2014) Evaluating the biodeterioration enzymatic activities of fungal contamination isolated from some ancient Yemeni mummies preserved in the national museum. Biochem Res Int. https://doi.org/10.1155/2014/481508

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nevalainen A, Morawaska L (2009) Biological agents in indoor environments. Assessment of health risks. Work conducted by a WHO Expert Group between 2000–2003. World Health Organization, Copenhagen, Denmark

  37. Nielsen KF (2003) Mycotoxin production by indoor molds. Fungal Genet Biol 39:103–117

    CAS  Article  Google Scholar 

  38. Nielsen KF, Thrane U, Larsen TO, Nielsen PA, Gravesen S (1998) Production of mycotoxins on artificially inoculated building materials. Int Biodeter Biodegr 42:8–17. https://doi.org/10.1023/A:1007038211176

    Article  Google Scholar 

  39. Oliveira MAR, Campos AA (2011). Barroco e rococó nas igrejas de Ouro Preto e Mariana. Roteiros do Patrimônio. Programa Monumenta. V.2. Brasília, DF: Iphan. pp. 78

  40. Pangallo D, Chovanová K, Šimonovičová A, Ferianc P (2009) Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing. Can J of Microbiol 55:277–287. https://doi.org/10.1139/w08-136

    CAS  Article  Google Scholar 

  41. Pangallo D, Kraková L, Chovanovám K, Šimonovičová A, De Leo F, Urzì C (2012) Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment through molecular and biodegradative assays. World J Microbiol Biotechnol 28:2015–2027. https://doi.org/10.1007/s11274-012-1004-7

    CAS  Article  PubMed  Google Scholar 

  42. Pangallo D, Simonovicová A, Chovanová K, Ferianc P (2007) Wooden art objects and the museum environment: identification and biodegradative characteristics of isolated microflora. Lett Appl Microbiol 45:87–94. https://doi.org/10.1111/j.1472-765X.2007.02138.x

    CAS  Article  PubMed  Google Scholar 

  43. Pepe O, Sannino L, Palomba S, Anastasio M, Blaiotta G, Villani F, Moschetti G (2010) Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 165:21–32

    CAS  Article  Google Scholar 

  44. Peterson K, Klocke J (2012) Understanding the deterioration of paintings by microorganisms and insects. In: Stoner JH, Rushfield R (eds) Conservation of easel paintings. Routledge, New York, pp 693–709

    Google Scholar 

  45. Piñar G, Poyntner C, Lopandic K, Tafer H, Sterflinger K (2020) Rapid diagnosis of biological colonization in cultural artefacts using the MinION nanopore sequencing technology. Int Biodeterior Biodegrad 148:104908. https://doi.org/10.1016/j.ibiod.2020.104908

    CAS  Article  Google Scholar 

  46. Radaelli A, Paganini M, Basavecchia V, Elli V, Neri M, Zanotto C, Pontieri E, De Giuli MC (2004) Identification, molecular biotyping and ultrastructural studies of bacterial communities isolated from two damaged frescoes of St Damian’s Monastery in Assisi. Lett Appl Microbiol 38:447–453. https://doi.org/10.1111/j.1472-765X.2004.01514.x

    CAS  Article  PubMed  Google Scholar 

  47. Ranalli G, Zanardini E, Rampazzi L, Corti C, Andreotti A, Colombini MP, Bosch-Roig P, Lustrato G et al (2019) Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. J Appl Microbiol 126:1785–1796. https://doi.org/10.1111/jam.14275

    CAS  Article  PubMed  Google Scholar 

  48. Resende MA, Castro-Rezende G, Viana EM, Becker TW, Warscheid T (1996) Acid production of fungi isolated from stones of historical monuments of state of Minas Gerais, Brazil, Second LABS (Latin American Biodeterioration Symposium) pp. 65–67. Gramado, RS, Brazil

  49. Ribeiro SCC, Santana ANC, Arriagada GH, Martins JEC, Takagaki TY (2005) A novel cause of invasive pulmonary infection in an immunocompetent patient: Aspergillus candidus. J Infection 51(4):e195–e197. https://doi.org/10.1016/j.jinf.2005.02.020

    CAS  Article  Google Scholar 

  50. Sabatini L, Sisti M, Campana R (2018) Evaluation of fungal community involved in the bioderioration process of wooden artworks and canvases in Montefeltro area (Marche, Italy). Microbiol Res 207:203–210. https://doi.org/10.1016/j.micres.2017.12.003

    CAS  Article  PubMed  Google Scholar 

  51. Samson RA, Flannigan B, Flannigan ME, Verhoeff AP, Adan OCG, Hoekstra ES (1994) (Eds): Health Implications of fungi in indoor environments. Air Quality Monographs. Vol. 2. Elsevier, Amsterdam

  52. Savković Z, Stupar M, Unković N, Ivanović Ž, Blagojević J, Vukojević J, Ljaljević Grbić ML (2019) In vitro biodegradation potential of airborne Aspergilli and Penicillia. Sci Nat 106(8):1–10. https://doi.org/10.1007/s00114-019-1603-3

    CAS  Article  Google Scholar 

  53. Selwitz C, Maekawa S (1998) Inert gases in the control of museum insect pests. Ed. Ball, T. The Getty Conservation Institute, California. pp.107

  54. Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24(1–2):47–55. https://doi.org/10.1016/j.fbr.2010.03.003

    Article  Google Scholar 

  55. Valentín N, Lidstrom M, Preusser F (1990) Microbial control by low oxygen and low relative humidity environment. Stud Conserv 35:222–230. https://doi.org/10.1179/sic.1990.35.4.222

    Article  Google Scholar 

  56. White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis NA, Gelfand J, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the restorer Gilson Felipe and the Anima Conservation, Restoration and Arts Eireli, Minas Gerais, Brazil, who are responsible for the restoration work of the Nossa Senhora da Conceição Church, Ouro Preto, Minas Gerais, Brazil.

Author information

Affiliations

Authors

Contributions

DB executed the project, analysed, and interpreted the data for sampling, the microbial growth conditions, and fungi identification. CSA executed, analysed, and interpreted the data for statistical analyses. AFBS executed the treatment of images, design graphics, and given historical information about the Nossa Senhora da Conceição Church and Ouro Preto city. MARS executed the coordination of this research, scientific suggestions, and correction of the manuscript. All the authors participated in the preparation of the article.

Corresponding author

Correspondence to Douglas Boniek.

Ethics declarations

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boniek, D., de Abreu, C.S., dos Santos, A.F.B. et al. Evaluation of microbiological air parameters and the fungal community involved in the potential risks of biodeterioration in a cultural heritage of humanity, Ouro Preto, Brazil. Folia Microbiol (2021). https://doi.org/10.1007/s12223-021-00880-2

Download citation

Keywords

  • Fungi
  • Biodeterioration
  • Settlement
  • Cultural heritage site
  • UNESCO