Skip to main content
Log in

Study of the effects of mineral salts on the biofilm formation on polypropylene fibers using three quantification methods

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The microbial biofilms are ubiquitous in nature and represent important biological entities that affect various aspects of human life. As such, they attracted considerable attention during last decades, with the factors affecting the biofilm development being among the frequently studied topics. In our work, the biofilm was cultivated on the surface of polypropylene fibers in a nutrient medium inoculated by the suspension of two unsterile soils. The effects of ionic strength and valence of salt on the amount of the produced biofilm and on composition of biofilm microbial communities were investigated. The effect of valence was significant in some OTUs: Arthrobacter/Pseudarthrobacter/Paenarthrobacter and Bacillus with positive response to monovalent salt (KCl) and Streptomyces, Lysinibacillus, Pseudomonas, and Ensifer with positive response to divalent salt (MgSO4). The significant preference for a certain concentration of salts was observed in the case of OTUs Agrobacterium, Bacillus (both 100 mM), and Brevundimonas (30 mM). A new quantification method based on measuring of oxidizable organic carbon in biofilm biomass, based on dichromate oxidation, was used. We compared the results obtained using this method with results of crystal violet destaining and measuring of extracted DNA concentration as proxies of the biofilm biomass. The dichromate oxidation is simple, inexpensive, and fast, and our results show that it may be more sensitive than crystal violet destaining. The highest biomass values tended to associate with high concentrations of the divalent salt. This trend was not observed in treatments where the monovalent salt was added. Our data confirm the importance of inorganic ions for biofilm composition and biomass accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzal I, Iqrar I, Shinwari ZK, Yasmin A (2017) Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul 81:399–408

    Article  CAS  Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability (Reprinted in 2003). Chapman and Hall, London

    Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 2:971

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137

    Article  Google Scholar 

  • Baxi NN, Shah AK (2001) Biological treatment of the components of solid waste from a nylon-6 production plant. World J Microbiol Biotechnol 16:835–840

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bergmann D, Furth G, Mayer C (2008) Binding of bivalent cations by xanthan in aqueous solution. Int J Biol Macromol 43:245–251

    Article  CAS  PubMed  Google Scholar 

  • Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® Baclight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86

    Article  CAS  PubMed  Google Scholar 

  • Bystrianský L, Hujslová M, Hršelová H, Řezáčová V, Němcová L, Šimsová J, Gryndlerová H, Kofroňová O, Benada O, Gryndler M (2019) Observations on two microbial life strategies in soil: planktonic and biofilm forming microorganisms are separable. Soil Biol Biochem 136:107535

    Article  CAS  Google Scholar 

  • Chenu C, Guérif J (1991) Mechanical stregth of clay materials as influenced by an absorbed polysaccharide. Soil Sci Soc Am J 55:1076–1080

    Article  CAS  Google Scholar 

  • Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Cordero I, Rincon A, Ruiz-Díez B, López M, Balaguer L, Pueyo JJ (2012) Effects of inoculation with plant growth-promoting rhizobacteria on salt stress alleviation in tomato. XIV Simposio Hispano-Luso de Nutricion Mineral de las Plantas “nutriPLANTA 2012”, Madrid – 23-26 06. 2012

  • Czarnes S, Hallett PD, Bengough AG, Young IM (2000) Root- and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci 51:435–443

    Article  Google Scholar 

  • Demodharan K, Palaniyandi SA, Le B, Suh JW, Yang SH (2018) Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom). J Microbiol 56:753–759

    Article  CAS  Google Scholar 

  • Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay forassessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll K, Jongsthaphongpun KL, Stumpp NS, Winkel A, Stiesch M (2016) Quantifying implant-associated biofilms: comparison of microscopic, microbiologicand biochemical methods. J Microbiol Methods 130:61–68

    Article  CAS  PubMed  Google Scholar 

  • Dragan AI, Casas-Finet JR, Bishop ES, Strouse RJ, Schenerman MA, Geddes CD (2010) Characterization of PicoGreen interaction with dsDNA and the origin of its fluorescence enhancement upon binding. Biophys J 99:3010–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drenovsky RE, Vo D, Graham KJ, Scow KM (2004) Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol 48:424–430

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Davranov K, Wirth S (2017) Impact of soil salinity on plant-growth promoting and biological control abilities of root associated bacteria. Saudi J Biol Sci 24:1601–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Extremina CI, Costa L, Aguiar AI, Peixe L, Fonseca AP (2011) Optimization of processing conditions for the quantification of enterococci biofilms using microtitre-plates. J Microbiol Methods 84:167–173

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC (2002) Biofouling in water systems - cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Fritz I, Strompl C, Nikitin DI, Lysenko AM, Abraham W (2005) Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. Int J Syst Evol Microbiol 55:479–486

    Article  CAS  PubMed  Google Scholar 

  • Furth G, Knierim R, Buss V, Mayer C (2008) Binding of bivalent cations by hyaluronate in aqueous solution. Int J Biol Macromol 42:33–40

    Article  CAS  PubMed  Google Scholar 

  • Gabrielson J, Hart M, Jarelöv A, Kühn I, McKenzie D, Möllby R (2002) Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J Microbiol Methods 50:63–73

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39

    Article  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the U. N. Nielsen et al. 1326 journal of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grande R, Di Marcantonio MC, Robuffo I, Pompilio A, Celia C, Di Marzio L, Paolino D, Codagnone M, Muraro R, Stoodley P, Hall-Stoodley L, Mincione G (2015) Helicobacter pylori ATCC 43629/NCTC 11639 outer membrane vesicles (OMVs) from biofilm and planktonic phase associated with extracellular DNA (eDNA). Front Microbiol 6:1369. https://doi.org/10.3389/fmicb.2015.01369

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths BS, Phillippot L (2012) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37:112–129

    Article  PubMed  CAS  Google Scholar 

  • Guibaud G, Tixier N, Bouju A, Baudu M (2003) Relation between extracellular polymers composition and its ability to complex Cd, Cu and Pb. Chemosphere 52:1701–1710

    Article  CAS  PubMed  Google Scholar 

  • Haney E, Trimble M, Cheng J, Vallé Q, Hancock R (2018) Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8:29

  • Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K (2008) Past, present and future of extremophiles. Extremophiles 12:1–2

    Article  PubMed  Google Scholar 

  • Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa–area relationship for bacteria. Nature 432:750–753

    Article  CAS  PubMed  Google Scholar 

  • Janjaroen D, Ling F, Monroy G, Derlon N, Mogenroth E, Boppart SA, Liu W-T, Nguyen TH (2013) Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces. Water Res 47:2531–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang HH, Qi PS, Wang T, Chi XY, Wang MA, Chen MN, Chen N, Pan LJ (2019) Role of halotolerant phosphate-solubilising bacteria on growth promotion of peanut (Arachis hypogaea) under saline soil. Ann Appl Biol 174:20–30

    Article  Google Scholar 

  • Kadiyala V, Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadmiri IM, Chaouqui L, Azaroual SE, Sijilmassi B, Yaakoubi K, Wahby I (2018) Phosphate-solubilizing and auxin-producing rhizobacteria promote plant growth under saline conditions. Arab J Sci Eng 43:3403–3415

    Article  CAS  Google Scholar 

  • Kumar A, Gangaiah D, Torrelles JB, Rajashekara G (2016) Polyphosphate and associated enzymes as global regulators of stress response and virulence in Campylobacter jejuni. World J Gastroenterol 22:7402–7414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lartiges BS, Deneux-Mustin S, Villemin G, Mustin C, Barres O, Chamerois M, Gerard B, Babut M (2001) Composition, structure and size distribution of suspended particulates from Rhine River. Water Res 35:808–816

    Article  CAS  PubMed  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang B, Lu P, Li H, Li R, Li S, Huang X (2009) Biodegradation of fomesafen by strain Lysinibacillus sp. ZB-1 isolated from soil. Chemosphere 77:1614–1619

    Article  CAS  PubMed  Google Scholar 

  • Lourenco A, Rego F, Brito L, Frank JF (2012) Evaluation of methods to assess the biofilm-forming ability of Listeria monocytogenes. J Food Prot 75:1411–1417

    Article  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo YN, Freitas L (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Mahfoud C, El Samrani A, Mouawad R, Hleihel W, El Khatib R, Lartiges BS, Ouaini N (2009) Disruption of biofilms from sewage pipes under physical and chemical conditioning. J Environ Sci 21:120–126

    Article  CAS  Google Scholar 

  • McCluskey C, Quinn JP, McGrath JW (2005) An evaluation of three newgeneration tetrazolium salts for the measurement of respiratory activity in activated sludge microorganisms. Microb Ecol 49:379–387

    Article  CAS  PubMed  Google Scholar 

  • Metwali EM, Abdelmoneim TS, Bakheit MA, Kadasa NM (2015) Alleviation of salinity stress in faba bean (Vicia faba L.) plants by inoculation with plant growth promoting rhizobacteria (PGPR). Plant Omics 8:449–460

    CAS  Google Scholar 

  • Nadell CD, Xavier JB, Foster KR (2008) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224

  • Nilsson C, Andersson E, Merritt DM, Johansson ME (2002) Differences in riparian flora between riverbanks and river lakeshores explained by dispersal traits. Ecology 83:2878–2887

    Article  Google Scholar 

  • O'Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  CAS  PubMed  Google Scholar 

  • Ommen P, Zobek N, Meyer RL (2017) Quantification of biofilm biomass by staining: non-toxic safranin can replace the popular crystal violet. J Microbiol Methods 141:87–89

    Article  CAS  PubMed  Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636

    Article  CAS  PubMed  Google Scholar 

  • Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165

    Article  CAS  PubMed  Google Scholar 

  • Prieto B, Silva B, Lantes O (2004) Biofilm quantification of stone surfaces: comparison of various methods. Sci Total Environ 333:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci U S A 104:2761–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randrianjatovo I, Girbal-Neuhauser E, Marcato-Romain C-E (2015) Epicocconone, a sensitive and specific fluorescent dye for in situ quantification of extracellular proteins within bacterial biofilms. Appl Microbiol Biotechnol 99:4835–4844

    Article  CAS  PubMed  Google Scholar 

  • Redmile-Gordon MA, Brookes PC, Evershed RP, Goulding KWT, Hirsch PR (2014) Measuring the soil-microbial interface: extraction of extracellular polymeric substances (EPS) from soil biofilms. Soil Biol Biochem 72:163–171

    Article  CAS  Google Scholar 

  • Safradian M, Askari A, Shariati JV, Nematzadeh G (2018) Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Sci Rep 9:1792

    Google Scholar 

  • Sahay R, Patra DD (2013) Identification and performance of stress-tolerant phosphate-solubilizing bacterial isolates on Tagetes minuta, grown in sodic soil. Soil Use Manag 29:494–500

    Article  Google Scholar 

  • Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Singh RH, Kaushik R, Saxena AK, Sharma AK (2014) Deciphering diversity of salt-tolerant bacilli from saline soils of eastern indo-gangetic plains of India. Geomicrobiol J 32:170–180

    Article  CAS  Google Scholar 

  • Sigma-Aldrich (2014) Safety data sheet. Crystal Violet

  • Sims JR, Haby VA (1971) Simplified colorimetric determination of soil organic matter. Soil Sci 112:137–141

    Article  CAS  Google Scholar 

  • Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  CAS  PubMed  Google Scholar 

  • Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q (2015) Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 15:36. https://doi.org/10.1186/s12866-015-0376-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (1999) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Szymanska S, Dabrowska GB, Tyburski J, Niedojadlo K, Piernik A, Hrynkiewicz K (2019) Boosting the Brassica napus L. tolerance to salinity by the halotolerant strain Pseudomonas stutzeri ISE12. Environ Exp Bot 163:55–68

    Article  CAS  Google Scholar 

  • Ter Braak CJF, Smilauer P (2012) Canoco reference manual and user’s guide: software for ordination (version 5). Microcomputer Power, Ithaca

    Google Scholar 

  • Toté K, Vanden Berghe D, Maes L, Cos P (2007) A new research tool in the battle against Staphylococcus aureus biofilms. In: Gilbert P, Allison D, Brading M, Pratten J, Spratt D, Upton M (eds) Biofilms: coming of age. The Biofilm Club, Manchester, pp 175–181

    Google Scholar 

  • Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soil 49:1027–1037

    Article  Google Scholar 

  • Vilarrasa J, Delgado LM, Galofré M, Álvarez G, Violant D, Manero JM, Blanc V, Gil FJ, Nart J (2018) In vitro evaluation of a multispecies oral biofilm over antibacterial coated titanium surfaces. J Mater Sci Mater Med 29:164

    Article  PubMed  CAS  Google Scholar 

  • Wakelin SA, Colloff MJ, Harvey PR, Marschner P, Gregg AL, Rogers SL (2007) The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiol Ecol 59:661–670

    Article  CAS  PubMed  Google Scholar 

  • Waller SA, Packman AI, Hausner M (2018) Comparison of biofilm cell quantification methods for drinking water distribution systems. J Microbiol Methods 144:8–21

  • Wang J, Zhang J, Ding K, Xin Y, Pang H (2012) Brevundimonas viscosa sp. nov., isolated from saline soil. Int J Syst Evol Microbiol 62:2475–2479

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

  • Winkelströter LK, Tulini FL, De Martinis ECP (2015) Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on Listeria monocytogenes biofilm formation. LWT-Food Sci Technol 64:586–592

  • Wu SJ, Hu ZH, Zhang LL, Yu X, Chen JM (2009) A novel dichloromethane-degrading Lysinibacillus sphaericus strain wh22 and its degradative plasmid. Appl Microbiol Biotechnol 82:731–740

Download references

Acknowledgments

Assistance provided by the Czech Science Foundation (project No. 17-09946S) and Research Infrastructure Pro-NanoEnviCZ (supported by the Ministry of Education, Youth and Sports of the Czech Republic, reg. No. CZ.02.1.01/0.0/0.0/16_013/0001821). Martina Hujslová obtained a sampling permission for the National Nature Reserve Soos from the Protected Landscape Area of the Slavkovský forest management (CHKO Slavkovský les).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Bystrianský.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict(s) of interest.

Ethical issues

This work complies with the current law of the Czech Republic and originated with respect to the common scientific ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 56 kb)

ESM 2

(PPTX 1.65 mb)

Table S1

(DOCX 14.2 kb)

Table S2

(XLSX 58 kb)

Table S3

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bystrianský, L., Hujslová, M. & Gryndler, M. Study of the effects of mineral salts on the biofilm formation on polypropylene fibers using three quantification methods. Folia Microbiol 66, 133–143 (2021). https://doi.org/10.1007/s12223-020-00833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-020-00833-1

Keywords

Navigation