Bacterial diversity associated with a newly described bioeroding sponge, Cliona thomasi, from the coral reefs on the West Coast of India

Abstract

The bacterial diversity associated with eroding sponges belonging to the Cliona viridis species complex is scarcely known. Cliona thomasi described from the West Coast of India is a new introduction to the viridis species complex. In this study, we determined the bacterial diversity associated with C. thomasi using next-generation sequencing. The results revealed the dominance of Proteobacteria followed by Cyanobacteria, Actinobacteria and Firmicutes. Among Proteobacteria, the Alphaproteobacteria were found to be the most dominant class. Furthermore, at the genus level, Rhodothalassium were highly abundant followed by Endozoicomonas in sponge samples. The beta-diversity and species richness measures showed remarkably lower diversity in Cliona thomasi than the ambient environment. The determined lower bacterial diversity in C. thomasi than the environmental samples, thus, categorized it as a low microbial abundance (LMA). Functional annotation of the C. thomasi–associated bacterial community indicates their possible role in photo-autotrophy, aerobic nitrification, coupling of sulphate reduction and sulphide oxidization. The present study unveils the bacterial diversity in bioeroding C. thomasi, which is a crucial step to determine the functions of the sponge holobiont in coral reef ecosystem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Accession numbers of nucleotide sequences submitted to NCBI are coded as follows: SRA submission SUB7245986, submission ID PRJNA623169 and Bio project PRJN623169.

References

  1. Achlatis M, Schönberg CHL, van der Zande RM, LaJeunesse TC, Hoegh-Guldberg O, Dove S (2019) Photosynthesis by symbiotic sponges enhances their ability to erode calcium carbonate. J Exp Mar Bio Ecol 516:140–149. https://doi.org/10.1016/j.jembe.2019.04.010

    Article  Google Scholar 

  2. Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Sinelnikov I, Budwill K, Nesbo CL, Wishart DS (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 40:88–W95. https://doi.org/10.1093/nar/gks497

    CAS  Article  Google Scholar 

  3. Audia C, Afonso De Menezes B, Sanches Afonso R et al (2017) Williamsia spongiae sp. nov., an actinomycete isolated from the marine sponge Amphimedon viridis. Int J Syst Evol Microbiol 67:1260–1265. https://doi.org/10.1099/ijsem.0.001796

  4. Bayer K, Moitinho-Silva L, Brümmer F, Cannistraci CV, Ravasi T, Hentschel U (2014) GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol 90:832–843. https://doi.org/10.1111/1574-6941.12441

    CAS  Article  PubMed  Google Scholar 

  5. Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353. https://doi.org/10.1016/j.ecss.2008.05.002

    Article  Google Scholar 

  6. Blanquer A, Uriz MJ, Galand PE (2013) Removing environmental sources of variation to gain insight on symbionts vs. transient microbes in high and low microbial abundance sponges. Environ Microbiol 15:3008–3019. https://doi.org/10.1111/1462-2920.12261

    CAS  Article  PubMed  Google Scholar 

  7. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS II, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    CAS  Article  Google Scholar 

  8. Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340. https://doi.org/10.1146/annurev-micro-102215-095440

    CAS  Article  PubMed  Google Scholar 

  9. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Carballo JL, Bautista E, Nava H et al (2013) Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol 3:872–886. https://doi.org/10.1002/ece3.452

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cárdenas CA, Bell JJ, Davy SK, Hoggard M, Taylor MW (2014) Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiol Ecol 88:516–527. https://doi.org/10.1111/1574-6941.12317

    CAS  Article  PubMed  Google Scholar 

  12. Clarke KR, Gorley RN (2015) PRIMER v7 Plymouth Routines In Multivariate Ecological Research. www.primer-e.com. Accessed 15 Feb 2020

  13. de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110. https://doi.org/10.1126/science.1241981

    CAS  Article  PubMed  Google Scholar 

  14. De K, Sautya S, Mote S et al (2015) Is climate change triggering coral bleaching in tropical reef? Curr Sci 109:1379–1880

    Google Scholar 

  15. De K, Nanajkar M, Mote S, Ingole B (2020) Coral damage by recreational diving activities in a marine protected area of India: unaccountability leading to ‘tragedy of the not so commons. Mar Pollut Bull 155:111190. https://doi.org/10.1016/j.marpolbul.2020.111190

    CAS  Article  PubMed  Google Scholar 

  16. Dubiller N, Mülders C, Ferdelman T et al (2001) Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411:298–302. https://doi.org/10.1038/35077067

    CAS  Article  Google Scholar 

  17. Erwin PM, Coma R, López-Sendino P, Serrano E, Ribes M (2015) Stable symbionts across the HMA-LMA dichotomy: low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol Ecol 91:1–11. https://doi.org/10.1093/femsec/fiv115

    CAS  Article  Google Scholar 

  18. Esteves AIS, Hardoim CCP, Xavier JR, Gonçalves JMS, Costa R (2013) Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic. FEMS Microbiol Ecol 85:519–536. https://doi.org/10.1111/1574-6941.12140

    CAS  Article  PubMed  Google Scholar 

  19. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, Thomas T (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci U S A 109:E1878–E1887. https://doi.org/10.1073/pnas.1203287109

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fiore CL, Baker DM, Lesser MP (2013) Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One 8:e72961. https://doi.org/10.1371/journal.pone.0072961

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Fiore CL, Labrie M, Jarett JK, Lesser MP (2015) Transcriptional activity of the giant barrel sponge, Xestospongia muta holobiont: molecular evidence for metabolic interchange. Front Microbiol 6(364):1–18. https://doi.org/10.3389/fmicb.2015.00364

    Article  Google Scholar 

  22. Gardères J, Bedoux G, Koutsouveli V, Crequer S, Desriac F, Pennec G (2015) Lipopolysaccharides from commensal and opportunistic bacteria: characterization and response of the immune system of the host sponge Suberites domuncula. Mar Drugs 13:4985–5006. https://doi.org/10.3390/md13084985

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Gardner SG, Nielsen DA, Laczka O, Shimmon R, Beltran VH, Ralph PJ, Petrou K (2016) Dimethylsulfoniopropionate, superoxide dismutase and glutathione as stress response indicators in three corals under short-term hyposalinity stress. Proc R Soc B Biol Sci 283:1–9. https://doi.org/10.1098/rspb.2015.2418

    CAS  Article  Google Scholar 

  24. Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck D, Wörheide G, Hentschel U (2014) The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull 227:78–88. https://doi.org/10.1086/BBLv227n1p78

    Article  PubMed  Google Scholar 

  25. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654. https://doi.org/10.1038/nrmicro2839

    CAS  Article  PubMed  Google Scholar 

  26. Hill M, Allenby A, Ramsby B, Schönberg C, Hill A (2011) Molecular phylogenetics and evolution Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol 59:81–88. https://doi.org/10.1016/j.ympev.2011.01.006

    Article  PubMed  Google Scholar 

  27. Hoffmann F, Rapp HT, Zöller T, Reitner J (2003) Growth and regeneration in cultivated fragments of the boreal deep water sponge Geodia barretti bowerbank, 1858 (Geodiidae, Tetractinellida, Demospongiae). J Biotechnol 100:109–118. https://doi.org/10.1016/S0168-1656(02)00258-4

    CAS  Article  PubMed  Google Scholar 

  28. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy ML, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243. https://doi.org/10.1111/j.1462-2920.2009.01944.x

    CAS  Article  PubMed  Google Scholar 

  29. Hussain A, De K, Thomas L et al (2016) Prevalence of skeletal tissue growth anomalies in a scleractinian coral: Turbinaria mesenterina of Malvan Marine Sanctuary, Eastern Arabian Sea. Dis Aquat Organ 121:79–83. https://doi.org/10.3354/dao03038

    Article  PubMed  Google Scholar 

  30. Jensen S, Duperron S, Birkeland N-K, Hovland M (2010) Intracellular Oceanospirillales bacteria inhabit gills of Acesta bivalves. FEMS Microbiol Ecol 74:523–533. https://doi.org/10.1111/j.1574-6941.2010.00981.x

    CAS  Article  PubMed  Google Scholar 

  31. Jensen S, Fortunato SAV, Hoffmann F, Hoem S, Rapp HT, Øvreås L, Torsvik VL (2017) The relative abundance and transcriptional activity of marine sponge-associated microorganisms emphasizing groups involved in sulfur cycle. Microb Ecol 73:668–676. https://doi.org/10.1007/s00248-016-0836-3

    CAS  Article  PubMed  Google Scholar 

  32. Jeong J-B, Kim K-H, Park J-S (2015) Sponge-specific unknown bacterial groups detected in marine sponges collected from Korea through barcoded pyrosequencing. J Microbiol Biotechnol 25:1–10

    Article  Google Scholar 

  33. Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J (2018) Marine sponge microbial association: towards disclosing unique symbiotic interactions. Mar Environ Res 140:169–179. https://doi.org/10.1016/j.marenvres.2018.04.017

    CAS  Article  PubMed  Google Scholar 

  34. Le Pennec G, Perovic S, Ammar MSA et al (2003) Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron. J Biotechnol 100:93–108

    Article  Google Scholar 

  35. Li H, Zhang Y, Li D, Xu H, Chen GX, Zhang CG (2009) Comparisons of different hypervariable regions of rrs genes for fingerprinting of microbial communities in paddy soils. Soil Biol Biochem 41:954–968. https://doi.org/10.1016/J.SOILBIO.2008.10.030

    CAS  Article  Google Scholar 

  36. Luter HM, Gibb K, Webster NS (2014) Eutrophication has no short-term effect on the Cymbastela stipitata holobiont. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00216

    Article  Google Scholar 

  37. Matthew S, Salvador LA, Schupp PJ, Paul VJ, Luesch H (2010) Cytotoxic halogenated macrolides and modified peptides from the apratoxin-producing marine cyanobacterium Lyngbya bouillonii from Guam. J Nat Prod 73:1544–1552. https://doi.org/10.1021/np1004032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U (2014) Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ Microbiol 16:3683–3698. https://doi.org/10.1111/1462-2920.12533

    CAS  Article  PubMed  Google Scholar 

  39. Morganti T, Coma R, Yahel G, Ribes M (2017) Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr 62:1963–1983. https://doi.org/10.1002/lno.10546

    CAS  Article  Google Scholar 

  40. Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J 9:894–908. https://doi.org/10.1038/ismej.2014.188

    CAS  Article  PubMed  Google Scholar 

  41. Mote S, Schönberg CHL, Samaai T, Gupta V, Ingole B (2019) A new clionaid sponge infests live corals on the west coast of India (Porifera, Demospongiae, Clionaida). Syst Biodivers 17:190–206. https://doi.org/10.1080/14772000.2018.1513430

    Article  Google Scholar 

  42. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Article  Google Scholar 

  43. Nishijima M, Adachi K, Katsuta A, Shizuri Y, Yamasato K (2013) Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. Int J Syst Evol Microbiol 63:709–714. https://doi.org/10.1099/ijs.0.042077-0

    CAS  Article  PubMed  Google Scholar 

  44. Oksanen J (2017) Vegan: ecological diversity. R Packag. Version 2.4-4 11. https://cran.r-project.org/package=vegan

  45. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422. https://doi.org/10.1128/MMBR.00039-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C, Sampayo EM, Warner ME, Smith DJ (2020) Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 8:8. https://doi.org/10.1186/s40168-019-0776-5

    Article  PubMed  PubMed Central  Google Scholar 

  47. Parfrey LW, Moreau CS, Russell JA (2018) Introduction: the host-associated microbiome: pattern, process and function. Mol Ecol 27:1749–1765

    Article  Google Scholar 

  48. Pineda MC, Strehlow B, Duckworth A, Doyle J, Jones R, Webster NS (2016) Effects of light attenuation on the sponge holobiont-implications for dredging management. Sci Rep 6:39038. https://doi.org/10.1038/srep39038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Pineda M-C, Strehlow B, Sternel M, Duckworth A, Jones R, Webster NS (2017) Effects of suspended sediments on the sponge holobiont with implications for dredging management. Sci Rep 7:4925. https://doi.org/10.1038/s41598-017-05241-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Pita L, Turon X, López-Legentil S, Erwin PM (2013) Host rules: spatial stability of bacterial communities associated with marine sponges (Ircinia spp.) in the Western Mediterranean Sea. FEMS Microbiol Ecol 86:268–276. https://doi.org/10.1111/1574-6941.12159

    CAS  Article  PubMed  Google Scholar 

  51. Pita L, Rix L, Slaby BM, Franke A, Hentschel U (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6:46. https://doi.org/10.1186/s40168-018-0428-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Poppell E, Weisz J, Spicer L, Massaro A, Hill A, Hill M (2014) Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar Ecol 35:414–424. https://doi.org/10.1111/maec.12098

    Article  Google Scholar 

  53. Ramsby BD, Hill MS, Thornhill DJ, Steenhuizen SF, Achlatis M, Lewis AM, LaJeunesse TC (2017) Sibling species of mutualistic Symbiodinium clade G from bioeroding sponges in the western Pacific and western Atlantic oceans. J Phycol 53:951–960. https://doi.org/10.1111/jpy.12576

    CAS  Article  PubMed  Google Scholar 

  54. Ramsby BD, Hoogenboom MO, Smith HA, Whalan S, Webster NS (2018a) The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-26535-w

    CAS  Article  Google Scholar 

  55. Ramsby BD, Hoogenboom MO, Whalan S, Webster NS (2018b) Elevated seawater temperature disrupts the microbiome of an ecologically important bioeroding sponge. Mol Ecol 27:2124–2137. https://doi.org/10.1111/mec.14544

    CAS  Article  PubMed  Google Scholar 

  56. Ribes M, Jiménez E, Yahel G, López-Sendino P, Diez B, Massana R, Sharp JH, Coma R (2012) Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol 14:1224–1239. https://doi.org/10.1111/j.1462-2920.2012.02701.x

    CAS  Article  PubMed  Google Scholar 

  57. Ribes M, Dziallas C, Coma R, Riemann L (2015) Microbial diversity and putative diazotrophy in high- and low- microbial-abundance mediterranean sponges. Appl Environ Microbiol 81:5683–5693. https://doi.org/10.1128/AEM.01320-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Roughgarden J, Scott GF et al (2017) Holobionts as units of selection and a model of their population dynamics and evolution. Biol Theory 0:3. https://doi.org/10.1007/s13752-017-0287-1

    Article  Google Scholar 

  59. Sacristán-Soriano O, Turon X, Hill M (2020) Microbiome structure of ecologically important bioeroding sponges (family Clionaidae): the role of host phylogeny and environmental plasticity. Coral Reefs 39:1285–1298. https://doi.org/10.1007/s00338-020-01962-2

    Article  Google Scholar 

  60. Sawhney S, Mishra JK (2019) Bioactive potential of bacterial endosymbionts isolated from Lamellodysidea herbacea, marine sponge from the coast of South Andaman, India, against human bacterial pathogens. J Appl Pharm Sci 9:1–8. https://doi.org/10.7324/JAPS.2019.90301

    CAS  Article  Google Scholar 

  61. Schönberg CHL, Fang JKH, Carreiro-Silva M, Tribollet A, Wisshak M(2017) Bioerosion: the other ocean acidification problem. ICES J Mar Sci 74:895–925

  62. Schorn MA, Jordan PA, Podell S et al (2019) Comparative genomics of cyanobacterial symbionts reveals distinct, specialized metabolism in tropical dysideidae sponges. MBio 10:e00821–e00819

    CAS  Article  Google Scholar 

  63. Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14:517–524. https://doi.org/10.1111/j.1462-2920.2011.02664.x

    CAS  Article  PubMed  Google Scholar 

  64. Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U (2017) Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J 11:2465–2478. https://doi.org/10.1038/ismej.2017.101

    Article  PubMed  PubMed Central  Google Scholar 

  65. Soares AR (2016) Diversity and specificity of the marine sponge microbiome as inspected by next generation sequencing. Ph. D. dessertation. University of Algarve, Portugal. Accessed online https://core.ac.uk/download/pdf/61528073.pdf. Accessed 18 Jan 2020

  66. Southwell MW, Weisz JB, Martens CS, Lindquist N (2008) In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr 53:986–996. https://doi.org/10.4319/lo.2008.53.3.0986

    CAS  Article  Google Scholar 

  67. Steindler L, Beer S, Ilan M (2002) Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis 33:263–273

    Google Scholar 

  68. Steinert G, Taylor MW, Deines P, Simister RL, de Voogd NJ, Hoggard M, Schupp PJ (2016) In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 4:e1936. https://doi.org/10.7717/peerj.1936

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Steinert G, Wemheuer B, Janussen D et al (2019) Prokaryotic diversity and community patterns in Antarctic continental shelf sponges. Front Mar Sci 6. https://doi.org/10.3389/fmars.2019.00297

  70. Teruya T, Nakagawa S, Koyama T, Arimoto H, Kita M, Uemura D (2004) Nakiterpiosin and nakiterpiosinone, novel cytotoxic C-nor-D-homosteroids from the Okinawan sponge Terpios hoshinota. Tetrahedron 60:6989–6993. https://doi.org/10.1016/J.TET.2003.08.083

    CAS  Article  Google Scholar 

  71. Thacker RW, Freeman CJ (2012) Sponge–microbe symbioses: recent advances and new directions. In: Becerro MA, Uriz MJ, Maldonado MTX (eds) Advances in sponge science: phylogeny, systematics, ecology, Advances in marine biology. Academic Press, Amsterdam, pp 57–111

    Google Scholar 

  72. Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM, López-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Victor Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:11870. https://doi.org/10.1038/ncomms11870

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Tout J, Astudillo-García C, Taylor MW, Tyson GW, Stocker R, Ralph PJ, Seymour JR, Webster NS (2017) Redefining the sponge-symbiont acquisition paradigm: sponge microbes exhibit chemotaxis towards host-derived compounds. Environ Microbiol Rep 9:750–755. https://doi.org/10.1111/1758-2229.12591

    CAS  Article  PubMed  Google Scholar 

  74. Villegas-Plazas M, Wos-Oxley ML, Sanchez JA, Pieper DH, Thomas OP, Junca H (2019) Variations in microbial diversity and metabolite profiles of the tropical marine sponge Xestospongia muta with season and depth. Microb Ecol 78:243–256. https://doi.org/10.1007/s00248-018-1285-y

    CAS  Article  PubMed  Google Scholar 

  75. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Webster NS, Thomas T (2016) The sponge hologenome. MBio 7:e00135–e00116. https://doi.org/10.1128/MBIO.00135-16

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wulff J (2001) Assessing and monitoring coral reef sponges: why and how? Bull Mar Sci 69:831–846

    Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Christine H. L. Schönberg (University of Western Australia) for her valuable suggestions. Authors thank Dr. Kuldeep More for his kind support in nMDS and alpha diveristy indices analysis. This study forms part of the Ph.D. thesis of SM. SM and KD acknowledge the CSIR SRF and DST INSPIRE fellowships, respectively. All necessary permissions for sampling and field observation have been obtained by the authors from the competent authorities.

Funding

This study was financially support received by the Rajiv Gandhi Science and Technology Commission, Government of Maharashtra, India, under the Maharastra Gene Bank project (GAP2871).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Vishal Gupta or Baban Ingole.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and field observation have been obtained by the authors from the competent authorities.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3733 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mote, S., Gupta, V., De, K. et al. Bacterial diversity associated with a newly described bioeroding sponge, Cliona thomasi, from the coral reefs on the West Coast of India. Folia Microbiol 66, 203–211 (2021). https://doi.org/10.1007/s12223-020-00830-4

Download citation