Skip to main content
Log in

Antifungal xanthones produced by the endophytic fungus Paraconionthyrium sp. YM 311593

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

During our investigation on the endophytic fungi of Azadirachta indica, the strain YM 311593 was obtained from the fruit of the plant. The culture extract of the strain showed antifungal activities against four phytopathogenic fungi. Based on the morphological features and phylogenetic definition, the strain YM 311593 was identified as Paraconiothyrium sp. Four xanthones and one anthraquinone were obtained from the extract of the fermentation broth of the strain. They were characterized to be globosuxanthone A (1), vertixanthone (2), hydroxyvertixanthone (3), 3,8-dihydroxy-1-methy1-9H- xanthen-9-one (4), and danthron (5), respectively, by spectroscopic elucidation. Furthermore, the absolute configuration of 1 was deduced by X-ray diffraction analysis. Besides, compound 4 was firstly found from natural sources. The antifungal activities of compounds 1–5 towards four phytopathogens were assayed using broth microdilution method. Among them, globosuxanthone A (1) showed obvious antifungal activity towards Fusarium graminearum, Fusarium solani, and Botrytis cinerea with MIC values of 4, 8, and 16 μg/mL, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida C, El Aouad N, Martin J, Perez-Victoria I, Gonzalez-Menendez V, Platas G, de la Cruz M, Monteiro MC, de Pedro N, Bills GF, Vicente F, Genilloud O, Reyes F (2014) Graminin B, a furanone from the fungus Paraconiothyrium sp. J Antibiot 67(5):421–423

    CAS  Google Scholar 

  • Ayer WA, Browne LM, Lin G (1989) Metabolites of Leptographium wageneri, the causative agent of black stain root disease of conifers. J Nat Prod 52(1):119–129

    CAS  Google Scholar 

  • Berger Y, Castonguay A (1978) The carbon-13 nuclear magnetic resonance spectra of anthraquinone, eight polyhydroxyanthraquinones and eight polymethoxyanthraquinones. Org Magn Reson 11(8):375–377

    CAS  Google Scholar 

  • Chen SX, Zhang Y, Niu SB, Liu XZ, Che YS (2014a) Cytotoxic cleistanthane and cassane diterpenoids from the entomogenous fungus Paraconiothyrium hawaiiense. J Nat Prod 77(6):1513–1518

    CAS  PubMed  Google Scholar 

  • Chen SX, Zhang Y, Zhao C, Ren FX, Liu XZ, Chen YS (2014b) Hawaiinolides E-G, cytotoxic cassane and cleistanthane diterpenoids from the entomogenous fungus Paraconiothyrium hawaiiense. Fitoterapia 99:236–242

    CAS  PubMed  Google Scholar 

  • Cho N, Ransom TT, Sigmund J, Tran T, Cichewwicz RH, Goetz M, Beutler JA (2017) Growth inhibition of colon cancer and melanoma cells by versiol derivatives from a Paraconiothyrium species. J Nat Prod 80(7):2037–2044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cloete M, Fourie PH, Damm U, Crous PW, Mostert L (2011) Fungi associated with die-back symptoms of apple and pear trees, a possible inoculum source of grapevine trunk disease pathogens. Phytopathol Mediterr 50:176–190

    Google Scholar 

  • Colombier MA, Alanio A, Denis B, Melica G, Garcia-Hermoso D, Levy B, Peraldi MN, Glotz D, Bretagne S, Gallien S (2015) Dual invasive infection with Phaeoacremonium parasiticum and Paraconiothyrium cyclothyrioides in a renal transplant recipient: case report and comprehensive review of the literature of Phaeoacremonium phaeohyphomycosis. J Clin Microbiol 53(7):2084–2094

    PubMed  PubMed Central  Google Scholar 

  • Damm U, Verkley GJM, Crous PW, Fourie PH, Haegi A, Riccioni L (2008) Novel Paraconiothyrium species on stone fruit trees and other woody hosts. Persoonia 20:9–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20(4):406–416

    Google Scholar 

  • Flack HD (1983) On enantiomorph-polarity estimation. Acta Crystallogr Sect A 39:876–881

    Google Scholar 

  • Fonteneau N, Martin P, Mondon M, Ficheux H, Gesson JP (2001) Synthesis of quinone and xanthone analogs of rhein. Tetrahedron 57(44):9131–9135

    CAS  Google Scholar 

  • Gao JM, Yang SX, Qin JC (2013) Azaphilones: chemistry and biology. Chem Rev 113(7):4755–4811

    CAS  PubMed  Google Scholar 

  • Han WB, Zhai YJ, Gao YQ, Zhou HY, Xiao J, Pescitelli G, Gao JM (2019) Cytochalasins and an abietane-type diterpenoid with allelopathic activities from the endophytic fungus Xylaria species. J Agric Food Chem 67(13):3643–3650

    CAS  PubMed  Google Scholar 

  • Huang R, Jiang BG, Li XN, Wang YT, Liu SS, Zheng KX, He J, Wu SH (2018) Polyoxygenated cyclohexenoids with promising α-glycosidase inhibitory activity produced by Phomopsis sp. YE3250, an endophytic fungus derived from Paeonia delavayi. J Agric Food Chem 66(5):1140–1146

    CAS  PubMed  Google Scholar 

  • Hussain H, Krohn K, Floerke U, Schulz B, Draeger S, Pescitelli G, Antus S, Kurtan T (2007) Absolute configurations of globosuxanthone A and secondary metabolites from Microdiplodia sp. - a novel solid-state CD/TDDFT approach. Eur J Org Chem 2:292–295

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276

    CAS  PubMed  Google Scholar 

  • Liu L, Gao H, Chen XL, Cai XY, Yang LL, Guo LD, Yao XS, Chen YS (2010) Brasilamides A-D: sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Eur J Org Chem 17:3302–3306

    Google Scholar 

  • Liu CX, Wang L, Chen JF, Guo ZY, Tu X, Deng ZS, Zou K (2015) Paraconfuranones A-H, eight new furanone analogs from the insect-associated fungus Paraconiothyrium brasiliense MZ-1. Magn Reson Chem 53(4):317–322

    CAS  PubMed  Google Scholar 

  • Mohamed IE, Kehraus S, Krick A, Konig GM, Kelter G, Maier A, Fiebig HH, Kalesse M, Malek NP, Gross H (2010) Mode of action of epoxyphomalins A and B and characterization of related metabolites from themmarine-derived fungus Paraconiothyrium sp. J Nat Prod 73(12):2053–2056

    CAS  PubMed  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    PubMed  PubMed Central  Google Scholar 

  • Quang TH, Kim DC, Van Kiem P, Van Minh C, Nhiem NX, Tai BH, Yen PH, Thi Thanh Ngan N, Kim HJ, Oh H (2018) Macrolide and phenolic metabolites from the marine-derived fungus Paraconiothyrium sp. VK-13 with anti-inflammatory. J Antibiot 71(9):826–830

    CAS  Google Scholar 

  • Ren FX, Chen SX, Zhang Y, Zhu SM, Xiao JH, Liu XZ, Su RB, Che YS (2018) Hawaiienols A-D, highly oxygenated p-terphenyls from an insect-associated fungus, Paraconiothyrium hawaiiense. J Nat Prod 81(8):1752–1759

    CAS  PubMed  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122

    CAS  Google Scholar 

  • Suzuki T, Ariefta NR, Koseki T, Furuno H, Kwon E, Momma H, Harneti D, Maharani R, Supratman U, Kimura K, Shiono Y (2019) New polyketides, paralatonic acids A-E produced by Paraconiothyrium sp. SW-B-1, an endophytic fungus associated with a seaweed, Chondrus ocellatus Holmes. Fitoterapia 132:75–81

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verkley GJM, da Silva M, Wicklow DT, Crous PW (2004) Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud Mycol 50:323–335

    Google Scholar 

  • Whipps JM, Gerlagh M (1992) Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol Res 96(11):897–907

    Google Scholar 

  • White TJ, Bruns T, Lee J, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, PCR protocols: a guide to methods and applications: 315–322. Academic Press, San Diego, California, USA

    Google Scholar 

  • Wijeratne EM, Turbyville TJ, Fritz A, Whitesell L, Gunatilaka AA (2006) A new dihydroxanthenone from a plant-associated strain of the fungus Chaetomium globosum demonstrates anticancer activity. Bioorg Med Chem 14(23):7917–7923

    CAS  PubMed  Google Scholar 

  • Wu SH, Chen YW, Shao SC, Wang LD, Li ZY, Yang LY, Li SL, Huang R (2008) Ten-membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J Nat Prod 71(4):731–734

    CAS  PubMed  Google Scholar 

  • Wu SH, He J, Li XN, Huang R, Song F, Chen YW, Miao CP (2014) Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry 105:197–204

    CAS  PubMed  Google Scholar 

  • Xiao J, Zhang Q, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J Agric Food Chem 62(16):3584–3590

    CAS  PubMed  Google Scholar 

  • Yamazaki H, Rotinsulu H, Kaneko T, Murakami K, Fujiwara H, Ukai K, Namikoshi M (2012) A new dibenz[b,e]oxepine derivative, 1-hydroxy-10-methoxy-dibenz[b,e]oxepin-6,11-dione, from a marine-derived fungus, Beauveria bassiana TPU942. Mar Drugs 10(12):2691–2697

  • Yuan Y, Tian JM, Xiao J, Shao Q, Gao JM (2014) Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba. Nat Prod Res 28(4):278–281

    CAS  PubMed  Google Scholar 

  • Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, Zhao LX (2016) Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 66(2):529–542

    CAS  Google Scholar 

Download references

Funding

The work was co-financed by the National Natural Science Foundation of China (Nos. 81860634, 81460545, 31660004), and the Program for Excellent Young Talents, Yunnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, C., Wang, J., Huang, R. et al. Antifungal xanthones produced by the endophytic fungus Paraconionthyrium sp. YM 311593. Folia Microbiol 65, 567–572 (2020). https://doi.org/10.1007/s12223-019-00762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-019-00762-8

Keywords

Navigation