Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum

Abstract

As potential probiotic traits of human milk-isolated bacteria have increasingly been recognized, this study aimed to evaluate the probiotic properties of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Among 118 human milk- and colostrum-isolated lactic cocci, only 29 were identified as Enterococcus. Of these, only four Enterococcus faecium isolates exhibited bacteriocigenic activity against several pathogenic Gram-positive bacteria, including Listeria monocytogenes. These isolates exhibited high acid (up to pH 3.0) and bile tolerance (0.5% oxgall) in simulated gastrointestinal conditions, demonstrating their ability to survive through the upper gastrointestinal tract. All of the E. faecium strains were shown to be sensitive to most of the antibiotics including vancomycin, tetracycline, rifampicin, and erythromycin, while they were resistant to kanamycin and chloramphenicol. None of the strains showed any virulence (gelE, agg2, clyA, clyB, clyM) and antibiotic resistance genes (vanA, vanB, ermB, tetM, and aac(6′)-le-aph(2″)-la). In addition, all the strains were able to assimilate cholesterol, ranging between 25.2–64.1% and they exhibited variable adherence (19–36%) to Caco-2 cells. Based on the overall results of this in vitro study, four of the E. faecium strains isolated from human milk and colostrum can be considered as promising probiotic candidates; however, further in vivo evaluations are required.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abushelaibi A, Al-Mahadin S, El-Tarabily K, Shah NP, Ayyash M (2017) Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT Food Sci Technol 79:316–325

    CAS  Google Scholar 

  2. Agerholm-Larsen L, Raben A, Haulrik N, Hansen A (2000) Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur J Clin Nutr 54:288–297

    CAS  PubMed  Google Scholar 

  3. Albesharat R, Ehrmann MA, Korakli M, Yazaji S, Vogel RF (2011) Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst Appl Microbiol 34:148–155

    CAS  PubMed  Google Scholar 

  4. Amenu D (2014) Probiotic properties of lactic acid bacteria from human milk. J Med Microbiol Diagn 3:2161–0703

    Google Scholar 

  5. Ayyash M, Abushelaibi A, Al-Mahadin S, Enan M, El-Tarabily K, Shah N (2018) In-vitro investigation into probiotic characterisation of Streptococcus and Enterococcus isolated from camel milk. LWT Food Sci Technol 87:478–487

    CAS  Google Scholar 

  6. Basson A, Flemming L, Chenia H (2008) Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microb Ecol 55:1–14

    CAS  PubMed  Google Scholar 

  7. Bhardwaj A, Kaur G, Gupta H, Vij S, Malik RK (2011) Interspecies diversity, safety and probiotic potential of bacteriocinogenic Enterococcus faecium isolated from dairy food and human faeces. World J Microbiol Biotechnol 27:591–602

    Google Scholar 

  8. Boris S, Suarez J, Barbes C (1997) Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J Appl Microbiol 83:413–420

    CAS  PubMed  Google Scholar 

  9. Canzi E, Guglielmetti S, Mora D, Tamagnini I, Parini C (2005) Conditions affecting cell surface properties of human intestinal bifidobacteria. Antonie Van Leeuwenhoek 88:207–219

    CAS  PubMed  Google Scholar 

  10. Cárdenas N, Arroyo R, Calzada J, Peirotén Á, Medina M, Rodríguez JM, Fernández L (2016) Evaluation of technological properties of Enterococcus faecium CECT 8849, a strain isolated from human milk, for the dairy industry. Appl Microbiol Biotechnol 100:7665–7677

    PubMed  Google Scholar 

  11. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61:1636–1643

    CAS  PubMed  Google Scholar 

  12. Chou L-S, Weimer B (1999) Isolation and characterization of acid-and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 82:23–31

    CAS  PubMed  Google Scholar 

  13. Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073

    CAS  Google Scholar 

  14. Corcoran B, Stanton C, Fitzgerald G, Ross R (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71:3060–3067

    CAS  PubMed  PubMed Central  Google Scholar 

  15. De Ambrosini VM, Gonzalez S, de Ruiz Holgado AP, Oliver G (1998) Study of the morphology of the cell walls of some strains of lactic acid bacteria and related species. J Food Prot 61:557–562

    Google Scholar 

  16. Deraz SF, Shehata MG, El-Banna AA, Khalil AA, El-Sahn MA (2013) A complementary “in vitro”study of bacteriocinogenic activity and probiotic characteristics of newly isolated Enterococcus faecium SFD. J Pure Appl Microbio 7:2673–2689

    CAS  Google Scholar 

  17. Di Cesare A, Vignaroli C, Luna GM, Pasquaroli S, Biavasco F (2012) Antibiotic-resistant enterococci in seawater and sediments from a coastal fish farm. Microb Drug Resist 18:502–509

    PubMed  Google Scholar 

  18. Di Cesare A, Luna GM, Vignaroli C, Pasquaroli S, Tota S, Paroncini P, Biavasco F (2013) Aquaculture can promote the presence and spread of antibiotic-resistant enterococci in marine sediments. PLoS One 8:e62838

    PubMed  PubMed Central  Google Scholar 

  19. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, Jarvenpaa KM (1990) Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 7(7):756–761

    CAS  PubMed  Google Scholar 

  20. Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ebringer L, Ferenčík M, Krajčovič J (2008) Beneficial health effects of milk and fermented dairy products. Folia Microbiol 53:378–394

    CAS  Google Scholar 

  22. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R, Rodríguez JM (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69:1–10

    PubMed  Google Scholar 

  24. Fernández M, Hudson JA, Korpela R, de los Reyes-Gavilán CG (2015) Impact on human health of microorganisms present in fermented dairy products: an overview. Biomed Res Int 2015:1–13

    Google Scholar 

  25. Foulquié Moreno M, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L (2003) Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J Appl Microbiol 94:214–229

    PubMed  Google Scholar 

  26. Franz CM, Specht I, Haberer P, Holzapfel WH (2001) Bile salt hydrolase activity of enterococci isolated from food: screening and quantitative determination. J Food Prot 64:725–729

    CAS  PubMed  Google Scholar 

  27. Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151:125–140

    CAS  PubMed  Google Scholar 

  28. Giraffa G (2003) Functionality of enterococci in dairy products. Int J Food Microbiol 88:215–222

    CAS  PubMed  Google Scholar 

  29. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S (1992) Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci 37(1):121–128

    CAS  PubMed  Google Scholar 

  30. Guo L, Li T, Tang Y, Yang L, Huo G (2015) Probiotic properties of Enterococcus strains isolated from traditional naturally fermented cream in China. Microb Biotechnol 9(6):737–745

    PubMed  PubMed Central  Google Scholar 

  31. Heikkilä M, Saris P (2003) Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 95:471–478

    PubMed  Google Scholar 

  32. Herranz C, Casaus P, Mukhopadhyay S, Martínez JM, Rodríguez JM, Nes IF, Hernández PE, Cintas LM (2001) Enterococcus faecium P21: a strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin a and enterocin B. Food Microbiol 18:115–131

    CAS  Google Scholar 

  33. Iranmanesh M, Ezzatpanah H, Mojgani N (2014) Antibacterial activity and cholesterol assimilation of lactic acid bacteria isolated from traditional Iranian dairy products. LWT Food Sci Technol 58:355–359

    CAS  Google Scholar 

  34. Ishimwe N, Daliri EB, Lee BH, Fang F, Du G (2015) The perspective on cholesterol-lowering mechanisms of probiotics. Mol Nutr Food Res 59:94–105

    CAS  PubMed  Google Scholar 

  35. Jiménez E, Delgado S, Fernández L, García N, Albújar M, Gómez A, Rodríguez JM (2008) Assessment of the bacterial diversity of human colostrum and screening of staphylococcal and enterococcal populations for potential virulence factors. Res Microbiol 159:595–601

    PubMed  Google Scholar 

  36. Jiménez E, Ladero V, Chico I, Maldonado-Barragán A, López M, Martín V, Fernández L, Fernández M, Álvarez MA, Torres C, Rodríguez JM (2013) Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiol 13:288

    PubMed  PubMed Central  Google Scholar 

  37. Jost T, Lacroix C, Braegger C, Chassard C (2013) Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 110:1253–1262

    CAS  PubMed  Google Scholar 

  38. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C (2014) Vertical mother–neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 16:2891–2904

    CAS  PubMed  Google Scholar 

  39. Kumar M, Tiwari SK, Srivastava S (2010) Purification and characterization of enterocin LR/6, a bacteriocin from Enterococcus faecium LR/6. Appl Biochem Biotechnol 160:40–49

    CAS  PubMed  Google Scholar 

  40. Lei M, Dai X, Liu M (2015) Biological characteristics and safety examination of five enterococcal strains from probiotic products. J Food Saf 35:324–335

    CAS  Google Scholar 

  41. Lund B, Edlund C (2003) Bloodstream isolates of Enterococcus faecium enriched with the enterococcal surface protein gene, esp, show increased adhesion to eukaryotic cells. J Clin Microbiol 41:5183–5185

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lye H-S, Rahmat-Ali GR, Liong M-T (2010) Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J 20:169–175

    CAS  Google Scholar 

  43. Mainville I, Arcand Y, Farnworth, ER (2005) A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int J Food Microbiol 99(3):287–296

    CAS  PubMed  Google Scholar 

  44. Maldonado-Barragán A, Caballero-Guerrero B, Jiménez E, Jiménez-Díaz R, Ruiz-Barba JL, Rodríguez JM (2009) Enterocin C, a class IIb bacteriocin produced by E. faecalis C901, a strain isolated from human colostrum. Int J Food Microbiol 133:105–112

    PubMed  Google Scholar 

  45. Manero A, Blanch AR (2002) Identification of Enterococcus spp. based on specific hybridisation with 16S rDNA probes. J Microbiol Methods 50:115–121

    CAS  PubMed  Google Scholar 

  46. Martín R, Langa S, Reviriego C, Jimínez E, Marín ML, Xaus J, Fernández L, Rodríguez JM (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143:754–758

    PubMed  Google Scholar 

  47. Martín V, Maldonado-Barragán A, Moles L, Rodriguez-Baños M, Campo R, Fernández L, Rodríguez JM, Jiménez E (2012) Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 28:36–44

    PubMed  Google Scholar 

  48. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442

    PubMed  PubMed Central  Google Scholar 

  49. Morrissey JH (1981) Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310

    CAS  PubMed  Google Scholar 

  50. Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    CAS  PubMed  Google Scholar 

  51. Naidu AS, Bidlack WR, Clemens RA (1999) Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39(1):13–126

    CAS  PubMed  Google Scholar 

  52. Ouwehand AC, Forssten S, Hibberd AA, Lyra A, Stahl B (2016) Probiotic approach to prevent antibiotic resistance. Ann Med 48:246–255

    CAS  PubMed  Google Scholar 

  53. Özmen Toğay S, Celebi Keskin A, Açık L, Temiz A (2010) Virulence genes, antibiotic resistance and plasmid profiles of Enterococcus faecalis and Enterococcus faecium from naturally fermented Turkish foods. J Appl Microbiol 109:1084–1092

    PubMed  Google Scholar 

  54. Pantev A, Kabadjova P, Dalgalarrondo M, Haertlé T, Ivanova I, Dousset X, Prévost H, Chobert JM (2002) Isolation and partial characterization of an antibacterial substance produced by Enterococcus faecium. Folia Microbiol 47:391–400

    CAS  Google Scholar 

  55. Pasquaroli S, Di Cesare A, Vignaroli C, Conti G, Citterio B, Biavasco F (2014) Erythromycin-and copper-resistant Enterococcus hirae from marine sediment and co-transfer of erm (B) and tcrB to human Enterococcus faecalis. Diagn Microbiol Infect Dis 80:26–28

    CAS  PubMed  Google Scholar 

  56. Pereira DI, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 68:4689–4693

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pérez-Sánchez T, Balcázar JL, García Y, Halaihel N, Vendrell D, de Blas I, Merrifield DL, Ruiz-Zarzuela I (2011) Identification and characterization of lactic acid bacteria isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), with inhibitory activity against Lactococcus garvieae. J Fish Dis 34:499–507

    PubMed  Google Scholar 

  58. Pieniz S, Andreazza R, Anghinoni T, Camargo F, Brandelli A (2014) Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 37:251–256

    CAS  Google Scholar 

  59. Rahman MM, Kim W-S, Kumura H, Shimazaki K-i (2008) Autoaggregation and surface hydrophobicity of bifidobacteria. World J Microbiol Biotechnol 24:1593–1598

    CAS  Google Scholar 

  60. Reis NA, Saraiva MAF, Duarte EAA, Carvalho E, Vieira BB, Evangelista-Barreto NS (2016) Probiotic properties of lactic acid bacteria isolated from human milk. J Appl Microbiol 121:811–820

    CAS  PubMed  Google Scholar 

  61. Ren D, Li C, Qin Y, Yin R, du S, Ye F, Liu C, Liu H, Wang M, Li Y, Sun Y, Li X, Tian M, Jin N (2014) In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe 30:1–10

    CAS  PubMed  Google Scholar 

  62. Reviriego C, Eaton T, Martín R, Jiménez E, Fernández L, Gasson MJ, Rodríguez JM (2005) Screening of virulence determinants in Enterococcus faecium strains isolated from breast milk. J Hum Lact 21:131–137

    PubMed  Google Scholar 

  63. Rivas FP, Castro MP, Vallejo M, Marguet E, Campos CA (2012) Antibacterial potential of Enterococcus faecium strains isolated from ewes’ milk and cheese. LWT Food Sci Technol 46:428–436

    CAS  Google Scholar 

  64. Rossi EA, Vendramini RC, Carlos IZ, Pei YC, de Valdez GF (1999) Development of a novel fermented soymilk product with potential probiotic properties. Eur Food Res Technol 209:305–307

    CAS  Google Scholar 

  65. Saelim K, Sohsomboon N, Kaewsuwan S, Maneerat S (2012) Probiotic properties of Enterococcus faecium CE5-1 producing a bacteriocin-like substance and its antagonistic effect against antibiotic-resistant enterococci in vitro. Czech J Anim Sci 57:529–539

    Google Scholar 

  66. Semedo T, Santos MA, Martins P, Lopes MFS, Marques JJF, Tenreiro R, Crespo MTB (2003) Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol 41:2569–2576

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shagger H, von Jagow G (1987) Tricine-SDS-PAGE for the separation of proteins in the 1–100 kDa range. Anal Biochem 168:368–379

    Google Scholar 

  68. Shehata AA, Tarabees R, Basiouni S, Gamil M, Kamal AS, Krüger M (2017) Phenotypic and genotypic characterization of bacteriocinogenic Enterococci against Clostridium botulinum. Probiotics Antimicrob Proteins 9:182–188

    CAS  PubMed  Google Scholar 

  69. Sica MG, Brugnoni LI, Marucci PL, Cubitto MA (2012) Characterization of probiotic properties of lactic acid bacteria isolated from an estuarine environment for application in rainbow trout (Oncorhynchus mykiss, Walbaum) farming. Antonie Van Leeuwenhoek 101(4):869–879

    PubMed  Google Scholar 

  70. Strompfová V, Lauková A (2007) In vitro study on bacteriocin production of enterococci associated with chickens. Anaerobe 13:228–237

    PubMed  Google Scholar 

  71. Strompfova V, Laukova A (2009) Enterococci from piglets—probiotic properties and responsiveness to natural antibacterial substances. Folia Microbiol 54:538–544

    CAS  Google Scholar 

  72. Šušković J, Kos B, Matošić S, Besendorfer V (2000) The effect of bile salts on survival and morphology of a potential probiotic strain Lactobacillus acidophilus M92. World J Microbiol Biotechnol 16:673–678

    Google Scholar 

  73. Taheri P, Samadi N, Ehsani MR, Khoshayand MR, Jamalifar H (2012) An evaluation and partial characterization of a bacteriocin produced by Lactococcus lactis subsp lactis ST1 isolated from goat milk. Braz J Microbiol 43:1452–1462

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Todorov SD, Dicks LM (2004) Characterization of mesentericin ST99, a bacteriocin produced by Leuconostoc mesenteroides subsp. dextranicum ST99 isolated from boza. J Ind Microbiol Biotechnol 31:323–329

    CAS  PubMed  Google Scholar 

  75. Todorov S et al (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104:465–477

    CAS  PubMed  Google Scholar 

  76. Toğay SÖ, Temiz A, Celebi A, Acik L, Yalçin SS (2014) Investigation of potential virulence genes and antibiotic resistance characteristics of Enterococcus faecalis isolates from human milk and colostrum samples. Turk J Biol 38:357–364

    Google Scholar 

  77. Tok E, Aslim B (2010) Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiol Immunol 54:257–264

    CAS  PubMed  Google Scholar 

  78. Valenzuela AS, Benomar N, Abriouel H, Cañamero MM, Gálvez A (2010) Isolation and identification of Enterococcus faecium from seafoods: antimicrobial resistance and production of bacteriocin-like substances. Food Microbiol 27:955–961

    CAS  PubMed  Google Scholar 

  79. Vankerckhoven V, Huys G, Vancanneyt M, Snauwaert C, Swings J, Klare I, Witte W, van Autgaerden T, Chapelle S, Lammens C, Goossens H (2008) Genotypic diversity, antimicrobial resistance, and virulence factors of human isolates and probiotic cultures constituting two intraspecific groups of Enterococcus faecium isolates. Appl Environ Microbiol 74:4247–4255

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vidhyasagar V, Jeevaratnam K (2013) Evaluation of Pediococcus pentosaceus strains isolated from idly batter for probiotic properties in vitro. J Funct Foods 5:235–243

    CAS  Google Scholar 

  81. Wardal E et al (2014) Molecular analysis of vanA outbreak of Enterococcus faecium in two Warsaw hospitals: the importance of mobile genetic elements. Biomed Res Int:2014

  82. Zhang F, Qiu L, Xu X, Liu Z, Zhan H, Tao X, Shah NP, Wei H (2017) Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats. J Dairy Sci 100:1618–1628

    CAS  PubMed  Google Scholar 

Download references

Funding

Authors would like to thank the Hacettepe University Scientific Research Coordination Unit (Project number: 4753) for financial support to this research project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ufuk Bagci.

Ethics declarations

The human milk samples were collected from the volunteers at Hacettepe University Hospital. The study protocol was approved by the Committee on Ethical Practice of the Faculty of Medicine, Hacettepe University, Ankara, Turkey. Informed consent was obtained from all individual participants included in the study. This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 703 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagci, U., Ozmen Togay, S., Temiz, A. et al. Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Folia Microbiol 64, 735–750 (2019). https://doi.org/10.1007/s12223-019-00687-2

Download citation