Skip to main content
Log in

Stb5p is involved in Kluyveromyces lactis response to 4-nitroquinoline-N-oxide stress

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

In yeast, the STB5 gene encodes a transcriptional factor belonging to binuclear cluster class (Zn2Cys6) of transcriptional regulators specific to ascomycetes. In this study, we prepared the Kluyveromyces lactis stb5Δ strain and assessed its responses to different stresses. We showed that KlSTB5 gene is able to complement the deficiencies of Saccharomyces cerevisiae stb5Δ mutant. The results of phenotypic analysis suggested that KlSTB5 gene deletion did not sensitize K. lactis cells to oxidative stress inducing compounds but led to Klstb5Δ resistance to 4-nitroquinoline-N-oxide and hygromycin B. Expression analysis indicated that the loss of KlSTB5 gene function induced the transcription of drug efflux pump encoding genes that might contribute to increased 4-nitroquinoline-N-oxide and hygromycin B tolerance. Our results show that KlStb5p functions as negative regulator of some ABC transporter genes in K. lactis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akache B, Turcotte B (2002) New regulators of drug sensitivity in the family of yeast zinc cluster proteins. J Biol Chem 277:21254–21260

    Article  CAS  PubMed  Google Scholar 

  • Akache B, Wu K, Turcotte B (2001) Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucleic Acids Res 29:2181–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akache B, MacPherson S, Sylvain MA, Turcotte B (2004) Complex interplay among regulators of drug resistance genes in Saccharomyces cerevisiae. J Biol Chem 279:27855–27860

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE et al (1989) Current protocols in molecular biology. Willey, New York

    Google Scholar 

  • Balkova K, Sarinova M, Hodurova Z, Goffrini P, Gbelska Y (2009) Functional analysis of the Kluyveromyces lactis PDR1 gene. FEMS Yeast Res 9:321–327

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breunig KD, Bolotin-Fukuhara M, Bianchi MM et al (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzym Microb Technol 26:771–780

    Article  CAS  Google Scholar 

  • Bussereau F, Casaregola S, Lafay JF, Bolotin-Fukuhara M (2006) The Kluyveromyces lactis repertoire of transcriptional regulators. FEMS Yeast Res 6:325–335

    Article  CAS  PubMed  Google Scholar 

  • Cadiere A, Galeote V, Dequin S (2010) The Saccharomyce cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway. FEMS Yeast Res 10:819–827

    Article  CAS  PubMed  Google Scholar 

  • Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Heng Tan C, Hutchins AP, Weinmeier T, Rattei T, Chu JSC, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu CH, Tang P, Hegemann P, Fromm H, Raoult D, Greub G, Miranda-Saavedra D, Chen N, Nash P, Ginger ML, Horn M, Schaap P, Caler L, Loftus BJ (2013) Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol 14:R11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gbelska Y, Krijger JJ, Breunig KD (2006) Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res 6:345–355

    Article  CAS  PubMed  Google Scholar 

  • Godinho CP, Prata CS, Pinto SN, Cardoso C, Bandarra NM, Fernandes F, Sá-Correia I (2018) Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Sci Rep 8:7860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Siso MI, Garcia-LeiroA TN, Cerdán ME (2009) Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Factories 8:46

    Article  CAS  Google Scholar 

  • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 4:2519–2524

    Article  Google Scholar 

  • Kasten MM, Stillman DJ (1997) Identification of the Saccharomyces cerevisiae genes STB1-STB5 encoding Sin3p binding proteins. Mol Gen Genet 256:376–386

    Article  CAS  PubMed  Google Scholar 

  • Klimova N, Yeung R, Kachurina N, Turcotte B (2014) Phenotypic analysis of a family of Trancriptional regulators, the zinc cluster proteins, in the human fungal pathogen Candida glabrata. G3 4:931–940

    Article  CAS  PubMed  Google Scholar 

  • Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792

    Article  CAS  PubMed  Google Scholar 

  • Larochelle M, Drouin S, Robert F, Turcotte B (2006) Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol Cell Biol 26:6690–6701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of trancription regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsufuji Y, Nakagawa T, Fujimura S, Tani A, Nakagawa J (2010) Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae. J Basic Microbiol 50:494–498

    Article  CAS  PubMed  Google Scholar 

  • Mehlgarten C, Krijger JJ, Lemnian I, Gohr A, Kasper L, Diesing AK, Grosse I, Breunig KD (2015) Divergent evolution of the transcriptional network controlled by Snf1-interacting protein Sip4 in budding yeasts. PLoS One 10:e0139464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble JA, Tsai HF, Suffis SD, Su Q, Myers TG, Bennett JE (2013) STB5 is a negative regulator of azole resistance in Candida glabrata. Antimicrob Agents Chemother 57:959–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 30:165–177

    Article  CAS  PubMed  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sánchez M, Iglesias FJ, Santamarıa C et al (1993) Transformation of Kluyveromyces lactis by electroporation. Appl Environ Microbiol 59:2087–2092

    PubMed  PubMed Central  Google Scholar 

  • Thompson JR, Register E, Curotto J, Kurtz M, Kelly R (1998) An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast 14:565–571

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Bencova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencova, A., Konecna, A., Toth Hervay, N. et al. Stb5p is involved in Kluyveromyces lactis response to 4-nitroquinoline-N-oxide stress. Folia Microbiol 64, 579–586 (2019). https://doi.org/10.1007/s12223-019-00682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-019-00682-7

Keywords

Navigation