A Raman-spectroscopy-based approach for detection and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages at low titer in raw milk

  • Emine Kübra Tayyarcan
  • Esra Acar Soykut
  • Ismail Hakki Boyaci
Original Article
  • 6 Downloads

Abstract

In this study, a method combining Raman spectroscopy with chemometric analysis was developed for detection of phage presence in raw milk and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages which are among the main phages causing problems in dairy industry. For this purpose, S. thermophilus and L. bulgaricus phages were added into raw milk separately, and then some pretreatments such as fat separation, removal of casein, and filtration were applied to the raw milk samples. Raman spectra of the samples were collected and then analyzed using principal component analysis in order to discriminate these phages in raw milk. In the next step, dilutions of S. thermophilus phages in pretreated raw milk were prepared, and Raman spectra were collected. These spectra were analyzed by using partial least squares method to quantify phages in low titer. Consequently, it has been demonstrated that S. thermophilus and L. bulgaricus phages, which have titers sufficient to fail the fermentation (~ 107 pfu/mL) and have lower titers (102–103 pfu/mL), could be discriminated from antibiotic and each other. Additionally, low concentrations of S. thermophilus phages (102 pfu/mL) could be detected through Raman spectroscopy with a short analysis time (60 min) and high coefficient of determination (R2) values for both calibration (0.985) and validation (0.906) with a root mean square error of calibration of 70.54 and root mean square error of prediction of 165.47. However, a lower success was achieved with L. bulgaricus phages and the obtained coefficient of determination values were not sufficiently high (0.649).

References

  1. Acar-Soykut E (2007) Identification and classification of virulent bacteriophages of Streptococcus thermophilus and Lactobacillus bulgaricus based on their replication parameters, capsid protein profiles and restriction endonuclease analysis. Dissertation, Ankara UniversityGoogle Scholar
  2. Acar-Soykut E, Tunail N (2016) Classification of Streptococcus thermophilus phages originating from Turkey. J Food Saf 36:186–194CrossRefGoogle Scholar
  3. Atamer Z, Dietrich J, Müller-Merbach M, Neve H, Heller KJ, Hinrichs J (2009) Screening for and characterization of Lactococcus lactis bacteriophages with high thermal resistance. Int Dairy J 19:228–235CrossRefGoogle Scholar
  4. Baraldi C, Tinti A, Ottani S, Gamberini MC (2014) Characterization of polymorphic ampicillin forms. J Pharm Biomed Anal 100:329–340.  https://doi.org/10.1016/j.jpba.2014.08.021 CrossRefPubMedGoogle Scholar
  5. Binetti AG, Reinheimer JA (2000) Thermal and chemical inactivation of indigenous Streptococcus thermophilus bacteriophages isolated from Argentinian dairy plants. J Food Prot 63:509–515CrossRefPubMedGoogle Scholar
  6. Binetti A, Capra ML, Alvarez M, Reinheimer JA (2008) PCR method for detection and identification of Lactobacillus casei/paracasei bacteriophages in dairy products. Int J Food Microbiol 124:147–153.  https://doi.org/10.1016/j.ijfoodmicro.2008.03.006 CrossRefPubMedGoogle Scholar
  7. Brouckaert D, Uyttersprot J-S, Broeckx W, De Beer T (2016) Development and validation of an at-line fast and non-destructive Raman spectroscopic method for the quantification of multiple components in liquid detergent compositions. Anal Chim Acta 941:26–34CrossRefPubMedGoogle Scholar
  8. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmonde-White K, Fullwood NJ, Gardner B, Martin-Hirsch PL, Walsh MJ (2016) Using Raman spectroscopy to characterize biological materials. Nat Protoc 11:664–687CrossRefPubMedGoogle Scholar
  9. Cao N (2013) Calibration optimization and efficiency in near infrared spectroscopy. Dissertation, Iowa State UniversityGoogle Scholar
  10. Capra ML, Quiberoni A, Reinheimer JA (2004) Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett Appl Microbiol 38:499–504.  https://doi.org/10.1111/j.1472-765X.2004.01525.x CrossRefPubMedGoogle Scholar
  11. Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J Raman Spectrosc 40:240–243CrossRefGoogle Scholar
  12. Coffey A, Ross RP (2002) Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 82:303–321.  https://doi.org/10.1023/A:1020639717181 Google Scholar
  13. Das RS, Agrawal YK (2011) Raman spectroscopy: recent advancements, techniques and applications. Vib Spectrosc 57:163–176.  https://doi.org/10.1016/j.vibspec.2011.08.003 CrossRefGoogle Scholar
  14. del Rio B, Martín MC, Martínez N, Magadán AH, Alvarez MA (2008) Multiplex fast real-time PCR for quantitative detection and identification of cos-and pac-type Streptococcus thermophilus bacteriophages. Appl Environ Microbiol 74:4779–4781CrossRefPubMedPubMedCentralGoogle Scholar
  15. Derbel N, Hernández B, Pflüger F, Liquier J, Geinguenaud F, Jaïdane N, Ben Lakhdar Z, Ghomi M (2007) Vibrational analysis of amino acids and short peptides in hydrated media. I. L-glycine and L-leucine. J Phys Chem B 111:1470–1477.  https://doi.org/10.1021/jp0633953 CrossRefPubMedGoogle Scholar
  16. Foschino R, Perrone F, Galli A (1995) Characterization of two virulent Lactobacillus fermentum bacteriophages isolated from sour dough. J Appl Bacteriol 79:677–683.  https://doi.org/10.1111/j.1365-2672.1995.tb00954.x CrossRefGoogle Scholar
  17. García-Aljaro C, Muñoz-Berbel X, Muñoz FJ (2009) On-chip impedimetric detection of bacteriophages in dairy samples. Biosens Bioelectron 24:1712–1716CrossRefPubMedGoogle Scholar
  18. Guan Y, Thomas GJ (1996) Vibrational analysis of nucleic acids. III. Conformation-dependent Raman markers of the phosphodiester backbone modeled by dimethyl phosphate. J Mol Struct 379:31–41.  https://doi.org/10.1016/0022-2860(95)09059-2 CrossRefGoogle Scholar
  19. Harz M, Rösch P, Popp J (2009) Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytom Part A 75:104–113CrossRefGoogle Scholar
  20. Heap HA, Harnett JT (2002) Bacteriophage in the dairy industry. Academic Press, Elsevier Science, USACrossRefGoogle Scholar
  21. Kaleli D, Tunail N, Acar E (2004) Virulent bacteriophages of Streptococcus thermophilus and lysogeny. Milchwissenschaft 59:487–491Google Scholar
  22. Kastanos EK, Kyriakides A, Hadjigeorgiou K, Pitris C (2010) A novel method for urinary tract infection diagnosis and antibiogram using Raman spectroscopy. J Raman Spectrosc 41:958–963CrossRefGoogle Scholar
  23. Kleppen HP, Bang T, Nes IF, Holo H (2011) Bacteriophages in milk fermentations: diversity fluctuations of normal and failed fermentations. Int Dairy J 21:592–600CrossRefGoogle Scholar
  24. Krusch U, Neve H, Luschei B, Teuber M (1987) Characterization of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus by host specificity and electron microscopy. Kieler Milchwirtsch Forschungsberichte 39:155–167Google Scholar
  25. Kumar P, Sharma N, Ranjan R et al (2013) Perspective of membrane technology in dairy industry: a review. Asian-Australasian J Anim Sci 26:1347–1358.  https://doi.org/10.1093/biostatistics/manuscript-acf-v5 CrossRefGoogle Scholar
  26. Li-Chan ECY (1996) The applications of Raman spectroscopy in food science. Trends Food Sci Technol 7:361–370CrossRefGoogle Scholar
  27. López-Díez EC, Goodacre R (2004) Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Anal Chem 76:585–591CrossRefPubMedGoogle Scholar
  28. Luria SE, Darnell JE (1967) General virology. Wiley, New York JGoogle Scholar
  29. Marcó MB, Garneau JE, Tremblay D, Quiberoni A, Moineau S (2012a) Characterization of two virulent phages of Lactobacillus plantarum. Appl Environ Microbiol 78:8719–8734.  https://doi.org/10.1128/AEM.02565-12 CrossRefGoogle Scholar
  30. Marcó MB, Moineau S, Quiberoni A (2012b) Bacteriophages and dairy fermentations. Bacteriophage 2:149–158CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mikkonen M, Dupont L, Alatossava T, Ritzenthaler P (1996) Defective site-specific integration elements are present in the genome of virulent bacteriophage LL-H of Lactobacillus delbrueckii. Appl Environ Microbiol 62:1847–1851PubMedPubMedCentralGoogle Scholar
  32. Moineau S (1999) Applications of phage resistance in lactic acid bacteria. In: Konings WN, Kuipers O, Kuipers OP (eds) Lactic acid bacteria: genetics, metabolism and applications: proceedings of the sixth symposium on lactic acid bacteria: genetics, metabolism and applications, 19–23 September 1999. Springer Netherlands, Dordrecht, Veldhoven, pp 377–382CrossRefGoogle Scholar
  33. Moineau S, Lévesque C (2005) Control of bacteriophages in industrial fermentations. Bacteriophages Biol Appl:285–296Google Scholar
  34. Mouwen DJM, Hörman A, Korkeala H, Alvarez-Ordóñez A, Prieto M (2011) Applying fourier-transform infrared spectroscopy and chemometrics to the characterization and identification of lactic acid bacteria. Vib Spectrosc 56:193–201.  https://doi.org/10.1016/j.vibspec.2011.02.008 CrossRefGoogle Scholar
  35. Neve H, Berger A, Heller KJ (1995) A method for detecting and enumerating airborne virulent bacteriophages of dairy starter cultures. Kieler Milchwirtsch Forschungsberichte 47:193–207Google Scholar
  36. Ochoa ML, Harrington PB (2005) Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry. Anal Chem 77:854–863.  https://doi.org/10.1021/ac048837q CrossRefPubMedGoogle Scholar
  37. Pahlow S, Stöckel S, Pollok S, Cialla-May D, Rösch P, Weber K, Popp J (2016) Rapid identification of Pseudomonas spp. via Raman spectroscopy using pyoverdine as capture probe. Anal Chem 88:1570–1577CrossRefPubMedGoogle Scholar
  38. Pazesh S, Lazorova L, Berggren J, Alderborn G, Gråsjö J (2016) Considerations on the quantitative analysis of apparent amorphicity of milled lactose by Raman spectroscopy. Int J Pharm 511:488–504.  https://doi.org/10.1016/j.ijpharm.2016.07.001 CrossRefPubMedGoogle Scholar
  39. Picquart M, Laborde M (1986) Raman scattering in aqueous solutions of sodium dodecyl sulfate. In surfactants in solution, Springer, pp. 189–201Google Scholar
  40. Pieters S, Saeys W, Van den Kerkhof T, Goodarzi M, Hellings M, De Beer T, Vander Heyden Y (2013) Robust calibrations on reduced sample sets for API content prediction in tablets: definition of a cost-effective NIR model development strategy. Anal Chim Acta 761:62–70CrossRefPubMedGoogle Scholar
  41. Pieters S, Roger JM, De Beer T, Matthias DH, De Spiegeleer B, Vander Heyden Y (2014) Raman model development for the protein conformational state classification in different freeze-dried formulations. Anal Chim Acta 825:42–50CrossRefPubMedGoogle Scholar
  42. Puniya AK (2015) Fermented milk and dairy products. CRC Press, Boca RatonGoogle Scholar
  43. Qi C, Lin Y, Feng J, Wang ZH, Zhu CF, Meng YH, Yan XY, Wan LJ, Jin G (2009) Phage M13KO7 detection with biosensor based on imaging ellipsometry and AFM microscopic confirmation. Virus Res 140:79–84CrossRefPubMedGoogle Scholar
  44. Quiberoni A, Guglielmotti DM, Reinheimer JA (2003) Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides. Int J Food Microbiol 84:51–62.  https://doi.org/10.1016/S0168-1605(02)00394-X CrossRefPubMedGoogle Scholar
  45. Rodríguez-Casado A, Moore SD, Prevelige JE, Thomas JJ (2001) Structure of bacteriophage P22 portal protein in relation to assembly: investigation by Raman spectroscopy. Biochemistry 40:13583–13591.  https://doi.org/10.1021/bi0110488 CrossRefPubMedGoogle Scholar
  46. Roger JM, Chauchard F, Bellon-Maurel V (2003) EPO–PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits. Chemom Intell Lab Syst 66:191–204CrossRefGoogle Scholar
  47. Samson JE, Moineau S (2013) Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu Rev Food Sci Technol 4:347–368.  https://doi.org/10.1146/annurev-food-030212-182541 CrossRefPubMedGoogle Scholar
  48. Sanders ME (1999) Bacteriophages in industrial fermentations. In: Frankel-Conrat H and Kimball PC (eds) Encyclopedia of Virology. Harcourt Brace, New York, pp 116–121Google Scholar
  49. Sozzi T, Maret R, Poulin JM (1976) Study of plating efficiency of bacteriophages of thermophilic lactic acid bacteria on different media. Appl Environ Microbiol 32:131–137PubMedPubMedCentralGoogle Scholar
  50. Sulakvelidze A, Alavidze Z, Morris JG (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sun Y, Overman SA, Thomas GJ (2007) Impact of in vitro assembly defects on in vivo function of the phage P22 portal. Virology 365:336–345.  https://doi.org/10.1016/j.virol.2007.02.040 CrossRefPubMedGoogle Scholar
  52. Tuma R, Parker MH, Weigele P, Sampson L, Sun Y, Krishna NR, Casjens S, Thomas GJ Jr, Prevelige PE Jr (1998) A helical coat protein recognition domain of the bacteriophage P22 scaffolding protein. J Mol Biol 281:81–94CrossRefPubMedGoogle Scholar
  53. Voorhees KJ (2014) Detection of phage amplification by SERS nanoparticles. U.S. Patent No. 8,697,434. Washington, DCGoogle Scholar
  54. Wu X, Huang YW, Park B, Tripp RA, Zhao Y (2015) Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced Raman spectroscopy and chemometric analysis. Talanta 139:96–103.  https://doi.org/10.1016/j.talanta.2015.02.045 CrossRefPubMedGoogle Scholar
  55. Yilmaz AG, Temiz HT, Acar Soykut E, Halkman K, Boyaci IH (2015) Rapid identification of Pseudomonas aeruginosa and Pseudomonas fluorescens using Raman spectroscopy. J Food Safety 35:501–508.  https://doi.org/10.1111/jfs.12200 CrossRefGoogle Scholar
  56. Zago M, Scaltriti E, Fornasari ME, Rivetti C, Grolli S, Giraffa G, Ramoni R, Carminati D (2012) Epifluorescence and atomic force microscopy: two innovative applications for studying phage-host interactions in Lactobacillus helveticus. J Microbiol Methods 88:41–46.  https://doi.org/10.1016/j.mimet.2011.10.006 CrossRefPubMedGoogle Scholar
  57. Zhu G, Zhu X, Fan Q, Wan X (2011) Raman spectra of amino acids and their aqueous solutions. Spectrochim Acta Part A 78:1187–1195.  https://doi.org/10.1016/j.saa.2010.12.079 CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2018

Authors and Affiliations

  • Emine Kübra Tayyarcan
    • 1
  • Esra Acar Soykut
    • 2
  • Ismail Hakki Boyaci
    • 1
  1. 1.Food Engineering DepartmentHacettepe UniversityAnkaraTurkey
  2. 2.Food Research CenterHacettepe UniversityAnkaraTurkey

Personalised recommendations