Advertisement

Folia Microbiologica

, Volume 63, Issue 3, pp 391–399 | Cite as

Characterization of a xylanolytic bacterial strain C10 isolated from the rumen of a red deer (Cervus elaphus) closely related of the recently described species Actinomyces succiniciruminis, A. glycerinitolerans, and A. ruminicola

  • Jiří ŠimůnekJr
  • Jiří Killer
  • Hana Sechovcová
  • Jiří Šimůnek
  • Radko Pechar
  • Vojtěch Rada
  • Pavel Švec
  • Ivo Sedláček
Original Article

Abstract

Gram-stain-positive, catalase and oxidase-negative and short rod-shaped bacterium C10 with occasional branching was isolated under strictly anaerobic conditions from the rumen fluid of a red deer (Cervus elaphus) in the course of study attempting to uncover new xylanolytic and cellulolytic rumen bacteria inhabiting the digestive tract of wild ruminants in the Czech Republic. The anaerobic M10 medium containing bovine rumen fluid and carboxymethylcellulose as a defined source of organic carbon was used in the process of bacterial isolation. The 16S rRNA gene similarity revealed recently characterized new species Actinomyces succiniciruminis Am4T (GenBank accession number of the gene retrieved from the complete genome: LK995506) and Actinomyces glycerinitolerans G10T (GenBank accession number from the complete genome: NZFQTT01000017) as the closest relatives (99.7 and 99.6% gene pairwise identity, respectively), followed by the Actinomyces ruminicola DSM 27982T (97.2%, in all compared fragment of 41468 pb). Due to the taxonomic affinity of the examined strain to both species A. succiniciruminis and A. glycerinitolerans, its taxonomic status towards these species was evaluated using variable regions of rpsA (length of 519 bp) and rplB (597 bp) gene sequences amplified based on specific primers designed so as to be applicable in differentiation, classification, and phylogeny of Actinomyces species/strains. Comparative analyses using rpsA and rplB showed 98.5 and 97.9% similarities of C10 to A. succiniciruminis, respectively, and 97.5 and 97.6% similarities to A. glycerinitolerans, respectively. Thus, gene identities revealed that the evaluated isolate C10 (=DSM 100236 = LMG 28777) is a little more related to the species A. succiniciruminis isolated from the rumen of a Holstein-Friesian cow than A. glycerinitolerans. Phylogenetic analyses confirmed affinity of strain C10 to both recently characterized species. Unfortunately, they did not allow the bacterial strain to be classified into a particular species. Phenotypic characterization suggested similar conclusions. This brief contribution is aimed at classification and detailed phenotypic characterization of bacterial strain C10 isolated from the rumen of a wild red deer exhibiting, from the point of view of Actinomyces species, noteworthy cellulolytic and xylanolytic activities.

Notes

Acknowledgements

This study was funded by the Czech Science Foundation (project no. 16-12431S) and partly supported by the Czech Collection of Microorganisms.

Supplementary material

12223_2017_577_MOESM1_ESM.pptx (2.2 mb)
ESM 1 (PPTX 2295 kb)

References

  1. An D, Cai S, Dong X (2006) Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 56(9):2043–2048.  https://doi.org/10.1099/ijs.0.64059-0 CrossRefPubMedGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  3. Caldwell DR, Bryant MP (1966) Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol 14(5):794–801PubMedPubMedCentralGoogle Scholar
  4. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552.  https://doi.org/10.1093/oxfordjournals.molbev.a026334 CrossRefPubMedGoogle Scholar
  5. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J (2002) Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52(Pt 5):1551–1558.  https://doi.org/10.1099/00207713-52-5-1551 PubMedGoogle Scholar
  6. Deshpande MV, Eriksson KE, Pettersson LG (1984) An assay for selective determination of exo-1,4,-β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138(2):481–487.  https://doi.org/10.1016/0003-2697(84)90843-1 CrossRefPubMedGoogle Scholar
  7. Duan H, Liu G, Wang X, Fu Y, Liang Q, Shang Y, Chu N, Huang H (2015) Evaluation of the ribosomal protein S1 gene (rpsA) as a novel biomarker for Mycobacteriumspecies identification. Biomed Res Int 2015:271728CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid - deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39(3):224–229.  https://doi.org/10.1099/00207713-39-3-224 CrossRefGoogle Scholar
  9. Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205(1):31–36.  https://doi.org/10.1111/j.1574-6968.2001.tb10921.x CrossRefPubMedGoogle Scholar
  10. Goris J, Suzuki K, De Vos P, Nakase T, Kersters K (1998) Evaluation of a microplate DNA - DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44(12):1148–1153.  https://doi.org/10.1139/w98-118 CrossRefGoogle Scholar
  11. Hong J, Tamaki H, Akiba S, Yamamoto K, Kumagai H (2001) Cloning of a gene encoding a highly stable endo-b-1,4-glucanase from Aspergillus niger and its expression in yeast. J Biosci Bioeng 92(5):434–441.  https://doi.org/10.1016/S1389-1723(01)80292-9 CrossRefPubMedGoogle Scholar
  12. Killer J, Havlík J, Bunešová V, Vlková E, Benada O (2014) Pseudoscardovia radai sp. nov., another representative of a new genus within the family Bifidobacteriaceae isolated from the digestive tract of a wild pig (Sus scrofa scrofa). Int J Syst Evol Microbiol 64(Pt 9):2932–2938.  https://doi.org/10.1099/ijs.0.063230-0 CrossRefPubMedGoogle Scholar
  13. Killer J, Kopečný J, Mrázek J, Havlík J, Koppová I, Benada O, Rada V, Kofroňová O (2010) Bombiscardovia coagulans gen. Nov., sp. nov., a new memeber of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 33(7):359–366.  https://doi.org/10.1016/j.syapm.2010.08.002 CrossRefPubMedGoogle Scholar
  14. Killer J, Kopečný J, Mrázek J, Rada V, Benada O, Koppová I, Havlík J, Straka J (2009) Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 59(8):2020–2024.  https://doi.org/10.1099/ijs.0.002915-0 CrossRefPubMedGoogle Scholar
  15. Killer J, Ročková Š, Vlková E, Rada V, Havlík J, Kopečný J, Bunešová V, Benada O, Kofroňová O, Pechar R, Profousová I (2013) Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov. Int J Syst Evol Microbiol 63(Pt 12):4439–4446.  https://doi.org/10.1099/ijs.0.051326-0 CrossRefPubMedGoogle Scholar
  16. Lever M (1977) Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem 81(1):21–27.  https://doi.org/10.1016/0003-2697(77)90594-2 CrossRefPubMedGoogle Scholar
  17. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68(10):5064–5081.  https://doi.org/10.1128/AEM.68.10.5064-5081.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Nyonyo T, Shinkai T, Mitsumori M (2014) Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen. FEMS Microbiol Ecol 88(3):528–537.  https://doi.org/10.1111/1574-6941.12318 CrossRefPubMedGoogle Scholar
  19. Okeke BC, Lu J (2011) Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Appl Biochem Biotechnol 163(7):869–881.  https://doi.org/10.1007/s12010-010-9091-0 CrossRefPubMedGoogle Scholar
  20. Palakawong NAS, Hornung B, Ravikumar Varadarajan A, Plugge W, Plugge CM (2017a) Draft genome sequence of Actinomyces succiniciruminisstrain Am4T, isolated from cow rumen fluid. Genome Announc 5(29):e01587-16CrossRefGoogle Scholar
  21. Palakawong NAS, Pristaš P, Hrehová L, Javorský P, Stams AJM, Plugge CM (2016) Actinomyces succiniciruminis sp. nov. and Actinomyces glycerinitolerans sp. nov., two novel organic acid-producing bacteria isolated from rumen. Syst Appl Microbiol 39(7):445–452.  https://doi.org/10.1016/j.syapm.2016.08.001 CrossRefGoogle Scholar
  22. Palakawong NAS, Strepis N, Pristaš P, Plugge CM (2017b) Draft genome sequence of Actinomyces glycerinitoleransstrain G10T isolated from sheep rumen fluid. Genome Announc 5(7):e01589-16CrossRefGoogle Scholar
  23. Pechar R, Killer J, Salmonová H, Geigerová M, Švejstil R, Švec P, Sedláček I, Rada V, Benada O (2017a) Bifidobacterium apri sp. nov., a thermophilic actinobacterium isolated from the digestive tract of wild pigs (Sus scrofa). Int J Syst Evol Microbiol 67(7):2349–2356.  https://doi.org/10.1099/ijsem.0.001956 CrossRefPubMedGoogle Scholar
  24. Pechar R, Killer J, Švejstil R, Salmonová H, Geigerová M, Bunešová V, Rada V, Benada O (2017b) Galliscardovia ingluviei gen. Nov., sp. nov., a thermophilic bacterium of the family Bifidobacteriaceae isolated from the crop of a laying hen (Gallus gallus f. domestica). Int J Syst Evol Microbiol 67(7):2403–2411.  https://doi.org/10.1099/ijsem.0.001972 CrossRefPubMedGoogle Scholar
  25. Saha BC, Bothast RJ (1996) Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Appl Environ Microbiol 62(9):3165–3170PubMedPubMedCentralGoogle Scholar
  26. SainiA, AggarwalNK, SharmaA, YadavA (2015) Actinomycetes: A Source of Lignocellulolytic Enzymes. Enzyme Res:279381Google Scholar
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wasielewska M, Banel A, Zygmunt B (2014) Capillary electrophoresis in determination of low molecular mass organic acids. Int J Environ Sci Develop 5(4):417–425.  https://doi.org/10.7763/IJESD.2014.V5.520 CrossRefGoogle Scholar
  29. Wu D, Jospin G, Eisen JA (2013) Systematic identification of gene families for use as "markers" for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups. PLoS One 8(10):e77033.  https://doi.org/10.1371/journal.pone.0077033 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617.  https://doi.org/10.1099/ijsem.0.001755 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zimmermann W, Winter B, Broda P (1988) Xylanolytic enzyme activities produced by mesophilic and thermophilic actinomycetes grown on graminaceous xylan and lignocellulose. FEMS Microbiol Lett 55(2):181–185.  https://doi.org/10.1111/j.1574-6968.1988.tb13930.x CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Jiří ŠimůnekJr
    • 1
    • 2
  • Jiří Killer
    • 1
    • 2
  • Hana Sechovcová
    • 1
  • Jiří Šimůnek
    • 1
  • Radko Pechar
    • 2
  • Vojtěch Rada
    • 2
  • Pavel Švec
    • 3
  • Ivo Sedláček
    • 3
  1. 1.Institute of Animal Physiology and Genetics v.v.i. of the Czech Academy of SciencesPrague4Czech Republic
  2. 2.Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and DieteticsCzech University of Life SciencesSuchdolCzech Republic
  3. 3.Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations