Folia Microbiologica

, Volume 63, Issue 3, pp 363–371 | Cite as

The impact of farnesol in combination with fluconazole on Candida albicans biofilm: regulation of ERG20, ERG9, and ERG11 genes

  • Stanislava Dižová
  • Lucia Černáková
  • Helena Bujdáková
Original Article


Farnesol (FAR) has already demonstrated an inhibitory effect on Candida albicans biofilm. The aim of this work was to determine the effectiveness of externally added FAR in combination with fluconazole (FLC) on Candida albicans biofilm and on regulation of the ergosterol genes ERG20, ERG9, and ERG11. The effectiveness of compounds was determined by MTT assay and evaluated by the minimal inhibitory concentrations reducing a sessile biofilm to 50% activity (0.5 μg/mL and 200 μmol/L for FLC and FAR, respectively). These concentrations as well as 30 and 100 μmol/L FAR were selected for a study of the effectiveness of the FAR/FLC combination. The reduction in biofilm robustness mainly caused by the presence of 200 μmol/L FAR—alone or in combination with FLC—was accompanied by a significant inhibition of the yeast-to-hyphae transition that was observed by light microscopy and CLSM. Results from qRT-PCR indicated that while 30 μmol/L FAR only slightly regulated the expression of all 3 genes in the 48-h biofilm, the presence of 200 μmol/L FAR downregulated all the tested genes. However, the addition of 0.5 μg/mL of FLC to the samples with 200 μmol/L FAR restored the downregulation of the ERG20 and ERG11 genes to the control level. Moreover, the gene ERG9 was slightly upregulated. In summary, FAR acted via multiple effects on the C. albicans biofilm, but only a higher concentration of FAR proved to be effective.



We wish to thank to MSc. Marek Korenčák and Dr. Imrich Hikkel, PhD. for the design of primers.

Authors’ contribution

SD performed majority of experiments and evaluated data, LČ participated in preparation of figures, evaluation of data, and revision of manuscript, HB designed manuscript, participated in evaluation of data, and writing manuscript.

Funding information

This research was funded by the Slovak Research and Development Agency under the contract No. [APVV-15-0347] and by the grant VEGA [1/0628/15] supported by the Ministry of Education, Science, Research and Sport of the Slovak Republic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12223_2017_574_Fig5_ESM.gif (812 kb)

(GIF 812 kb).

12223_2017_574_MOESM1_ESM.tif (21 mb)
High Resolution Image (TIFF 21553 kb).


  1. Albuquerque P, Casadevall A (2012) Quorum sensing in fungi—a review. Med Mycol 50(4):337–345. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Borecká-Melkusová S, Moran GP, Sullivan DJ, Kucháriková S, Chorvát DJ, Bujdákova H (2009) The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Mycoses 52(2):118–128. CrossRefPubMedGoogle Scholar
  3. Bujdáková H, Kuchta T, Sidóová E, Gvozdjaková A (1993) Anti-Candida activity of four antifungal benzothiazoles. FEMS Microbiol Lett 112(3):329–333. CrossRefPubMedGoogle Scholar
  4. Cannon RD, Kerridge D (1988) Correlation between the sterol composition of membranes and morphology in Candida albicans. J Med Vet Mycol 26(1):57–65. CrossRefPubMedGoogle Scholar
  5. Černáková L, Chupáčová J, Židlíková K, Bujdáková H (2015) Effectiveness of the photoactive dye methylene blue versus caspofungin on the Candida parapsilosis biofilm in vitro and ex vivo. Photochem Photobiol 91(5):1181–1190. CrossRefPubMedGoogle Scholar
  6. Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14(16):1471–1510.<1471::AID-YEA353>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  7. Dawis MA, Isenberg HD, France KA, Jenkins SG (2003) In vitro activity of gatifloxacin alone and in combination with cefepime, meropenem, piperacillin and gentamicin against multidrug-resistant organisms. Antimicrob Chemother 51(5):1203–1211. CrossRefGoogle Scholar
  8. Deveau A, Piispanen AE, Jackson AA, Hogan DA (2010) Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot Cell 9(4):569–577. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Flowers SA, Colón B, Whaley SG, Schuler MA, Rogers PD (2015) Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother 59(1):450–460. CrossRefPubMedGoogle Scholar
  10. Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198(1):179–182. CrossRefPubMedGoogle Scholar
  11. Grabowska D, Karst F, Szkopińska A (1998) Effect of squalene synthase gene disruption on synthesis of polyprenols in Saccharomyces cerevisiae. FEBS Lett 434(3):406–408. CrossRefPubMedGoogle Scholar
  12. Guedouari H, Gergondey R, Bourdais A, Vanparis O, Bulteau AL, Camadro JM, Auchère F (2014) Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Biochim Biophys Acta 1842(9):1855–1869. CrossRefPubMedGoogle Scholar
  13. Gulati M, Nobile CJ (2016) Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 18(5):310–321. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Han TL, Cannon RD, Villas-Bôas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48(8):747–763. CrossRefPubMedGoogle Scholar
  15. Henry KW, Nickels JT, Edlind TD (2000) Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 44(10):2693–2700. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hitchcock CA, Dickinson K, Brown SB, Evans EGV, Adams DJ (1989) Purification and properties of cytochrome P-450-dependent 14 a -sterol demethylase from Candida albicans. Biochem J 263(2):573–579. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hornby JM, Nickerson KW (2004) Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother 48(6):2305–2307.
  18. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Katragkou A, McCarthy M, Alexander EL, Antachopoulos C, Meletiadis J, Jabra-Rizk MA, Petraitis V, Roilides E, Walsh TJ (2015) In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. J Antimicrob Chemother 70(2):470–478. CrossRefPubMedGoogle Scholar
  20. Kolecka A, Chorvát D Jr, Bujdáková H (2015) The impact of growth conditions on biofilm formation and the cell surface hydrophobicity in fluconazole susceptible and tolerant Candida albicans. Folia Microbiol 60(1):45–51. CrossRefGoogle Scholar
  21. Livak JK, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 4:402–408CrossRefGoogle Scholar
  22. M’Baya B, Fegueur M, Servouse M, Karst F (1989) Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae. Lipids 24(12):1020–1023. CrossRefPubMedGoogle Scholar
  23. Martin R, Moran GP, Jacobsen ID, Heyken A, Domey J, Sullivan DJ, Kurzai O, Hube B (2011) The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PLoS One 6(4):e18394. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mathé L, Van Dijck P (2013) Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 59(4):251–264. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mosel DD, Dumitru R, Hornby JM, Atkin AL, Nickerson KW (2005) Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl Environ Microbiol 71(8):4938–4940. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63. CrossRefPubMedGoogle Scholar
  27. Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52(1):1. CrossRefPubMedGoogle Scholar
  28. Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49(1):95–116. CrossRefPubMedGoogle Scholar
  29. Perumal P, Mekala S, Chaffin WL (2007) Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 51(7):2454–2463. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Plochocka D, Karst F, Swiezewska E, Szkopińska A (2000) The role of ERG20 gene (encoding yeast farnesyl diphosphate synthase) mutation in long dolichol formation. Molecular modeling of FPP synthase. Biochimie 82(8):733–738. CrossRefPubMedGoogle Scholar
  31. Rajendran R, Sherry L, Nile CJ, Sherriff A, Johnson EM, Hanson MF, Williams C, Munro CA, Jones BJ, Ramage G (2016) Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection-Scotland, 2012-2013. Clin Microbiol Infect 22(1):87–93. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ramage G, Walle KV, Wickes BL, López-Ribot JL (2001) Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45(9):2475–2479. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ramage G, Saville SP, Wickes BL, López-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68(11):5459–5463. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sanglard D, Ischer F, Koymans L, Bille J (1998) Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 42(2):241–253CrossRefPubMedPubMedCentralGoogle Scholar
  35. Seneviratne CJ, Jin LJ, Samaranayake YH, Samaranayake LP (2008) Cell density and cell aging as factors modulating antifungal resistance of Candida albicans biofilms. Antimicrob Agents Chemother 52(9):3259–3266. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sharma M, Prasad R (2011) The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Chemother 55(10):4834–4843. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA (2009) Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53(6):2392–2401. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tashiro M, Kimura S, Tateda K, Saga T, Ohno A, Ishii Y, Izumikawa K, Tashiro T, Kohno S, Yamaguchi K (2012) Pravastatin inhibits farnesol production in Candida albicans and improves survival in a mouse model of systemic candidiasis. Med Mycol 50(4):353–360. CrossRefPubMedGoogle Scholar
  39. Vanden Bossche H (1985) Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. Curr Top Med Mycol 1:313–351. CrossRefGoogle Scholar
  40. Vanden Bossche H (1990) Importance and role of sterols in fungal membranes. In: Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Copping LG (eds) Biochemistry of cell walls and membranes in fungi. Springer, Berlin, pp 135–157. CrossRefGoogle Scholar
  41. Weber K, Sohr R, Schulz B, Fleischhacker M, Ruhnke M (2008) Secretion of E,E-farnesol and biofilm formation in eight different Candida species. Antimicrob Agents Chemother 52(5):1859–1861. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yu LH, Wei X, Ma M, Chen XJ, Xu SB (2012) Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrob Agents Chemother 56(2):770–775. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhang Y, Cai C, Yang Y, Weng L, Wang L (2011) Blocking of Candida albicans biofilm formation by cis-2-dodecenoic acid and trans-2-dodecenoic acid. J Med Microbiol 60(11):1643–1650. CrossRefPubMedGoogle Scholar
  44. Zhu J, Krom BP, Sanglard D, Intapa C, Dawson CC, Peters BM, Shirtliff ME, Jabra-Rizk MA (2011) Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione. PLoS One 6(12):e28830. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Stanislava Dižová
    • 1
  • Lucia Černáková
    • 1
  • Helena Bujdáková
    • 1
  1. 1.Department of Microbiology and Virology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia

Personalised recommendations