Folia Microbiologica

, Volume 63, Issue 3, pp 291–298 | Cite as

Detection of virulence-related genes in Lactococcus garvieae and their expression in response to different conditions

  • Giovanni Eraclio
  • Giovanni Ricci
  • Mattia Quattrini
  • Paolo Moroni
  • Maria Grazia Fortina
Original Article
  • 124 Downloads

Abstract

Lactococcus garvieae has emerged as an important zoonotic pathogen. However, information regarding mechanisms and factors related to its pathogenicity is lacking. In the present study, we investigated the distribution and functionality of genes related to virulence factors in L. garvieae strains isolated from different niches (diseased fish, humans, meat and dairy products, vegetables), using both post-genomic and genotypic analysis. Putative genes encoding hemolysin, fibronectin-binding protein, and penicillin acylase were detected in all analyzed genomes/strains. Their expression was significantly induced by bile salt stress. Putative genes encoding bile salt hydrolase were found in a few strains from dairy and human sources, as well as the mobilizable tet genes. Finally, all genomes possessed a folate gene cluster, in which mutations in the dihydropteroate synthase gene (folP) could be related to sulfonamide resistance. To the best of our knowledge, this is the first study aimed to explore the pathogenic potential of L. garvieae through the analysis of numerous L. garvieae genomes/strains, coming from different sources. This approach allowed the detection of virulence-related genes not yet investigated in the species and the study of their expression after exposure to different environmental stresses. The results obtained suggest a virulence potential in some L. garvieae strains that can be exploited for survival in the human gastrointestinal tract.

Keywords

Lactococcus garvieae Emerging zoonotic pathogen Virulence genes Gene expression studies 

Notes

Acknowledgments

We thank Dr. Milda Stuknite for providing language help and writing assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12223_2017_566_MOESM1_ESM.pdf (323 kb)
ESM 1 (PDF 322 kb)

References

  1. Aguado-Urda M, Gibello A, Blanco MM, Fernández-Garayzábal JF, López-Alonso V, López-Campos GH (2013) Global transcriptome analysis of Lactococcus garvieae strains in response to temperature. PLoS One 8(11):e79692.  https://doi.org/10.1371/journal.pone.0079692 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguado-Urda M, López-Campos GH, Blanco MM, Fernández-Garayzábal JF, Cutuli MT, Aspiroz C, López-Alonso V, Gibello A (2011a) Genome sequence of Lactococcus garvieae 21881, isolated in a case of human septicemia. J Bacteriol 193(15):4033–4034.  https://doi.org/10.1128/JB.05090-11 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aguado-Urda M, López-Campos GH, Gibello A, Cutuli MT, López-Alonso V, Fernández-Garayzábal JF, Blanco MM (2011b) Genome sequence of Lactococcus garvieae 8831, isolated from rainbow trout lactococcosis outbreaks in Spain. J Bacteriol 193(16):4263–4264.  https://doi.org/10.1128/JB.05326-11 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aquilanti L, Garofalo C, Osimani A, Silvestri G, Vignaroli C, Clementi F (2007) Isolation and molecular characterization of antibiotic-resistant lactic acid bacteria from poultry and swine meat products. J Food Prot 70(3):557–565.  https://doi.org/10.4315/0362-028X-70.3.557 CrossRefPubMedGoogle Scholar
  6. Aziz RK, Bartels D, Bes AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST server: rapid annotation using subsystems technology. BMC Genomics 9(1):75.  https://doi.org/10.1186/1471-2164-9-75 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Babaoglu KJQ, Lee RE, White SW (2004) Crystal structure of 7,8-dihydropteroate synthase from Bacillus anthracis: mechanism and novel inhibitor. Des Struct 12(9):1705–1717.  https://doi.org/10.1016/j.str.2004.07.011 CrossRefGoogle Scholar
  8. Baca AM, Sirawaraporn R, Turle S, Sirawaraporn W, Hol WGJ (2000) Crystal structure of Mycobacterium tuberculosis 6-hydroxymethyl-7,8-dihydropteroate synthase in complex with pterin monophosphate: new insight into the enzymatic mechanism and sulfa-drug action. J Mol Biol 302(5):1193–1212.  https://doi.org/10.1006/jmbi.2000.4094 CrossRefPubMedGoogle Scholar
  9. Barnes AC, Guyot C, Hansen BG, Mackenzie K, Horne MT, Ellis AE (2002) Resistance to serum killing may contribute to differences in the abilities of capsulate and non-capsulated isolates of Lactococcus garvieae to cause disease in rainbow trout (Oncorhynchus mykiss L.) Fish Shellfish Immun 12:155–168CrossRefGoogle Scholar
  10. Begley M, Sleator RD, Gahan CGM, Hill C (2005) Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria moncytogenes. Infect Immun 73(2):894–904.  https://doi.org/10.1128/IAI.73.2.894-904.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Byrne-Bailey KG, Gaze WH, Kay P, Boxall AB, Hawkey PM, Wellington EMH (2009) Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrob Agents Chemother 53(2):696–702.  https://doi.org/10.1128/AAC.00652-07 CrossRefPubMedGoogle Scholar
  12. Chan JFW, Woo PCY, Teng JLL, Lau SKP, Leung SSM, Tam FCC, Yuen KY (2011) Primary infective spondylodiscitis caused by Lactococcus garvieae and a review of human L. garvieae infections. Infection 39(3):259–264.  https://doi.org/10.1007/s15010-011-0094-8 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferrario C, Ricci G, Borgo F, Rollando A, Fortina MG (2012) Genetic investigation within Lactococcus garvieae revealed two genomic lineages. FEMS Microbiol Lett 332(2):153–161.  https://doi.org/10.1111/j.1574-6968.2012.02591.x CrossRefPubMedGoogle Scholar
  14. Ferrario C, Ricci G, Milani C, Lugli GA, Ventura M, Eraclio G, Borgo F, Fortina MG (2013) Lactococcus garvieae: where is it from? A first approach to explore the evolutionary history of this emerging pathogen. PLoS One 8(12):e84796.  https://doi.org/10.1371/journal.pone.0084796 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Florez AB, Reimundo P, Delgado S, Fernandez E, Alegria A, Guijarro JA, Mayo B (2012) Genome sequence of Lactococcus garvieae IPLA 31405, a bacteriocin-producing, tetracycline-resistant strain isolated from a raw-milk cheese. J Bacteriol 194(18):5118–5119.  https://doi.org/10.1128/JB.00975-12 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fortina MG, Ricci G, Acquati A, Zeppa G, Gandini A, Manachini PL (2003) Genetic characterization of some lactic acid bacteria occurring in an artisanal protected denomination origin (PDO) Italian cheese, the Toma Piemontese. Food Microbiol 20(4):397–404.  https://doi.org/10.1016/S0740-0020(02)00149-1 CrossRefGoogle Scholar
  17. Gabrielsen C, Brede DA, Hernandez PE, Nes IF, Diep DB (2012) Genome sequence of the bacteriocin-producing strain Lactococcus garvieae DCC43. J Bacteriol 194(24):6976–6977.  https://doi.org/10.1128/JB.01864-12 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2(8):907–913.  https://doi.org/10.1016/S1286-4579(00)00392-0 CrossRefPubMedGoogle Scholar
  19. Henderson B, Nair S, Pallas J, Williams MA (2010) Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35:147–200CrossRefGoogle Scholar
  20. Heying R, van de Gevel J, Que YA, Piroth L, Moreillon P, Beekhuizen H (2009) Contribution of (sub)domains of Staphylococcus aureus fibronectin-binding protein to the proinflammatory and procoagulant response of human vascular endothelial cells. Thromb Haemost 101(3):495–504PubMedGoogle Scholar
  21. Huovinen P, Sundstrom L, Swedberg G, Skold O (1995) Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 39(2):279–289.  https://doi.org/10.1128/AAC.39.2.279 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kawanishi M, Yoshida T, Kijima M, Yagyu K, Nakai T, Okada S, Endo A, Murakami M, Suzuki S, Morita H (2007) Characterization of Lactococcus garvieae isolated from radish and broccoli sprouts that exhibited a KG+ phenotype, lack of virulence and absence of a capsule. Lett Appl Microbiol 44(5):481–487.  https://doi.org/10.1111/j.1472-765X.2007.02114.x CrossRefPubMedGoogle Scholar
  23. Kawanishi M, Yoshida T, Yagashiro S, Kijima M, Yagyu K, Nakai T, Murakami M, Morita H, Suzuki S (2006) Differences between Lactococcus garvieae isolated from the genus Seriola in Japan and those isolated from other animals (trout, terrestrial animals from Europe) with regard to pathogenicity, phage susceptibility and genetic characterization. J Appl Microbiol 101(2):496–504.  https://doi.org/10.1111/j.1365-2672.2006.02951.x CrossRefPubMedGoogle Scholar
  24. Kim JH, Go J, Cho CR, Kim JI, Lee MS, Park SC (2013) First report of human acute acalculous cholecystitis caused by the fish pathogen Lactococcus garvieae. J Clin Microbiol 51(2):712–714.  https://doi.org/10.1128/JCM.02369-12 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim JH, Kang D-H, Park SC (2015) Draft genome sequence of human-pathogenic Lactococcus garvieae LG-ilsanpaik-gs201105 that caused acute acalculous cholecystitis. Genome A 3(3):e00464–e00415.  https://doi.org/10.1128/genomeA.00464-15 PubMedPubMedCentralGoogle Scholar
  26. Kubota H, Tsuji H, Matsuda K, Kurawa T, Asahara T, Nomoto K (2010) Detection of human intestinal catalase-negative, gram-positive cocci by rRNA targeted reverse transcription-PCR. Appl Environ Microbiol 76(16):5440–5451.  https://doi.org/10.1128/AEM.03132-09 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lambert JM, Siezen RJ, de Vos WM, Kleerebezem M (2008) Improved annotation of conjugated bile acid hydrolase superfamily members in gram-positive bacteria. Microbiology 154(8):2492–2500.  https://doi.org/10.1099/mic.0.2008/016808-0 CrossRefPubMedGoogle Scholar
  28. Leroy F, De Vuyst L (2005) Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC494 strain. Intern J Food Microbiol 100(1-3):141–152.  https://doi.org/10.1016/j.ijfoodmicro.2004.10.011 CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  30. McLaughlin RW, Cochran PA, Dowd SE (2014) Isolation of Lactococcus garvieae strain TRF1 from the fecal material of a timber rattlesnake. Curr Microbiol 69(1):63–68.  https://doi.org/10.1007/s00284-014-0554-3 CrossRefPubMedGoogle Scholar
  31. Miyauchi E, Toh H, Nakano A, Tanabe S, Morita H (2012) Comparative genomic analysis of Lactococcus garvieae strains isolated from different sources reveals candidate virulence genes. Intern J Microbiol 2012:1–7.  https://doi.org/10.1155/2012/728276 CrossRefGoogle Scholar
  32. Morita H, Toh H, Oshima K, Yoshizaki M, Kawanishi M, Nakaya K, Suzuki T, Miyauchi E, Ishii Y, Tanabe S, Murakami M, Hattori M (2011) Complete genome sequence and comparative analysis of the fish pathogen Lactococcus garvieae. PLoS One 6(8):e23184.  https://doi.org/10.1371/journal.pone.0023184 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Moumene M, Drissi F, Croce O, Djebbari B, Robert C, Angelakis E, Benouareth DE, Raoult D, Merhej V (2016) Complete genome sequence and description of Lactococcus garvieae M14 isolated from Algerian fermented milk. New Microbe New Infect 10:122–131.  https://doi.org/10.1016/j.nmni.2016.01.009 CrossRefGoogle Scholar
  34. Osawa R, Yamai S (1996) Production of thermostable direct hemolysis by Vibrio parahaemolyticus enhanced by conjugated bile acids. Appl Environ Microbiol 62(8):3023–3025PubMedPubMedCentralGoogle Scholar
  35. Pumbwe L, Skilbeck CA, Nakano V, Avila-Campos MJ, Piazza RMF, Wexler HM (2007) Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb Pathog 43(2-3):78–87.  https://doi.org/10.1016/j.micpath.2007.04.002 CrossRefPubMedGoogle Scholar
  36. Rasmussen M, Bjork Werner J, Dolk M, Christensson B (2014) Lactococcus garvieae endocarditis presenting with subdural haematoma. BMC Cardiovasc Disord 14(1):13.  https://doi.org/10.1186/1471-2261-14-13 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Reguera-Brito M, Galán-Sánchez F, Blanco MM, Rodríguez-Iglesias M, Domínguez L, Fernández-Garayzábal JF, Gibello A (2016) Genetic analysis of human clinical isolates of Lactococcus garvieae: relatedness with isolates from foods. Infect Genet Evol 37:185–191.  https://doi.org/10.1016/j.meegid.2015.11.017 CrossRefPubMedGoogle Scholar
  38. Reimundo P, Pignatelli M, Alcaraz LD, D’Auria G, Moya A, Guijarro JA (2011) Genome sequence of Lactococcus garvieae UNIUD074, isolated in Italy from a lactococcosis outbreak. J Bacteriol 193(14):3684–3685.  https://doi.org/10.1128/JB.05210-11 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ricci G, Ferrario C, Borgo F, Eraclio G, Fortina MG (2013) Genome sequences of two Lactococcus garvieae strains isolated from meat. Genome Ann 1(1):e00018–e00012Google Scholar
  40. Ricci G, Ferrario C, Borgo F, Rollando A, Fortina MG (2012) Genome sequences of Lactococcus garvieae TB2.5, isolated from Italian cheese, and Lactococcus garvieae LG9, isolated from Italian rainbow-trout. J Bacteriol 194(5):1249–1250.  https://doi.org/10.1128/JB.06655-11 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ruiz L, Margolles A, Sànchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4.  https://doi.org/10.3389/fmicb.2013.00396
  42. Sachdeva MM, Moshiri A, Leder HA, Scott AW (2016) Endophthalmitis following intravitreal injection of anti-VEGF agents: long-term outcomes and the identification of unusual micro-organisms. J Ophthalmic Inflam Infect 6(1):2–7.  https://doi.org/10.1186/s12348-015-0069-5 CrossRefGoogle Scholar
  43. Speziale P, Pietrocola G, Rindi S, Provenzano M, Provenza G, Di Poto A, Visai L, Arciola RC (2009) Structural and functional role of Staphylococcus aureus surface components recognizing adhesive matrix molecules of the host. Future Microbiol 4(10):1337–1352.  https://doi.org/10.2217/fmb.09.102 CrossRefPubMedGoogle Scholar
  44. Terao Y, Kawabata S, Nakata M, Nakagawa I, Hamada S (2002) Molecular characterization of a novel fibronectin-binding protein of Streptococcus pyogenes strains isolated from toxic shock-like syndrome patients. J Biol Chem 277(49):47428–47435.  https://doi.org/10.1074/jbc.M209133200 CrossRefPubMedGoogle Scholar
  45. Vendrell D, Balcázar JL, Ruiz-Zarzuela I, de Blas I, Gironés O, Múzquiz JL (2006) Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis 29(4):177–198.  https://doi.org/10.1016/j.cimid.2006.06.003 CrossRefPubMedGoogle Scholar
  46. Walther C, Rossano A, Thomann A, Perreten V (2008) Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A)gene in susceptible Lactococcus garvieae strains. Vet Microbiol 131(3-4):348–357.  https://doi.org/10.1016/j.vetmic.2008.03.008 CrossRefPubMedGoogle Scholar
  47. Wang C-YC, Shie H-S, Chen S-C, Huang J-P, Hsieh I-C, Wen M-S, Lin F-C, Wu D (2007) Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. Int J Clin Pract 61(1):68–73.  https://doi.org/10.1111/j.1742-1241.2006.00855.x CrossRefPubMedGoogle Scholar
  48. Wang N, Yang X, Jiao S, Zhang J, Ye B, Gao S (2014) Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu province, southeastern China. PLoS One 9(11):e112626.  https://doi.org/10.1371/journal.pone.0112626 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yoshida T, Endo M, Sakai M, Inglis V (1997) A cell capsule with possible involvement in resistance to opsonophagocytosis in Enterococcus seriolicida isolated from yellowtail Seriola quinqueradiata. Dis Aquat Org 29:233–235.  https://doi.org/10.3354/dao029233 CrossRefGoogle Scholar
  50. Yun M-K, Wu Y, Li Z, Zhao Y, Waddell MB, Ferreira AM, Lee RE, Bashford D, White SW (2012) Catalysis and sulfa drug resistance in dihydropteroate synthase: crystal structures reveal the catalytic mechanism of DHPS and the structural basis of sulfa drug action and resistance. Science 2 335(6072):1110–1114.  https://doi.org/10.1126/science.1214641 CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Giovanni Eraclio
    • 1
  • Giovanni Ricci
    • 1
  • Mattia Quattrini
    • 1
  • Paolo Moroni
    • 2
    • 3
  • Maria Grazia Fortina
    • 1
  1. 1.Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’AmbienteUniversità degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Medicina VeterinariaUniversità degli Studi di MilanoMilanItaly
  3. 3.Cornell University, Animal Health Diagnostic CenterQuality Milk Production ServicesIthacaUSA

Personalised recommendations