Skip to main content

Detection of Coxiella burnetii DNA and anti-Coxiella burnetii IgG antibodies in precolostral blood samples of stillborn calves in an endemically infected Holstein dairy herd

Abstract

Coxiella burnetii (C. burnetii), an intracellular zoonotic bacterium causing Q fever, occurs widely in cattle herds. After invasion of the pregnant uterus and initial localization in the placenta, active C. burnetii infections may spread to the fetus hematogenously or by the amniotic-oral route and thus may cause abortion, premature delivery, stillbirth, and weak offspring (APSW) complex. In a case-control study, we investigated precolostral blood samples of 56 stillborn calves and 30 live births from a dairy herd endemically infected with C. burnetii “C-cluster” strains and an increased stillbirth rate in primiparous cows. Within the group of the stillborn calves, four precolostral blood samples (7.1%) were tested positive for C. burnetii DNA by PCR and one serum sample (1.8%) positive for anti-C. burnetii IgG antibodies by a commercial ELISA test, respectively. Neither C. burnetii DNA nor anti-C. burnetii IgG antibodies were detected in the samples of calves being born alive. In conclusion, we demonstrated that coxiellaemia and precolostral seroconversion occurred sporadically in stillborn calves from this endemically infected herd. Due to the low detection rates, C. burnetii could not be confirmed to be the cause of the increased stillbirth rate.

This is a preview of subscription content, access via your institution.

References

  1. ADR (Arbeitsgemeinschaft Deutscher Rinderzüchter e.V.) (2006) ADR-Empfehlung 3.1 -Leistungsprüfung für funktionale Merkmale bei Bullen und Kühen (Gesundheit, Reproduktion, Nutzungsdauer, Exterieur, Melkbarkeit). http://www.adr-web.de/richtlinien/funktionale-merkmale.html?highlight=empfehlung+leistungspruefung+ funktionale+merkmale&. Accessed 20 June 2016

  2. Agerholm JS (2013) Coxiella burnetii associated reproductive disorders in domestic animals—a critical review. Acta Vet Scand 55:13

    Article  PubMed  PubMed Central  Google Scholar 

  3. Agerholm JS (2014) Coxiella burnetii and reproductive disorders in cattle. Infect Genet Evol 28:150

    Article  PubMed  Google Scholar 

  4. Agerholm JS, Jensen TK, Agger JF, Engelsma MY, Roest HI (2017) Presence of Coxiella burnetii DNA in inflamed bovine cardiac valves. BMC Vet Res 13:69

    Article  PubMed  PubMed Central  Google Scholar 

  5. Angelakis E, Mediannikov O, Socolovschi C, Mouffok N, Bassene H, Tall A, Niangaly H, Doumbo O, Znazen A, Sarih M, Sokhna C, Raoult D (2014) Coxiella burnetii-positive PCR in febrile patients in rural and urban Africa. Int J Infect Dis 28:107–110

    Article  PubMed  Google Scholar 

  6. Behymer DE, Biberstein EL, Riemann HP, Franti CE, Sawyer M, Ruppanner R, Crenshaw GL (1976) Q fever (Coxiella burnetii) investigations in dairy cattle: challenge of immunity after vaccination. Am J Vet Res 37:631–634

    CAS  PubMed  Google Scholar 

  7. Berglund B (2008) Genetic improvement of dairy cow reproductive performance. Reprod Domest Anim 43:89–95

    Article  PubMed  Google Scholar 

  8. Boettcher J, Vossen A, Janowetz B, Alex M, Gangl A, Randt A, Meier N (2011) Insights into the dynamics of endemic Coxiella burnetii infection in cattle by application of phase-specific ELISAs in an infected dairy herd. Vet Microbiol 151:291–300

    Article  Google Scholar 

  9. Boettcher J, Schumacher M, Janowetz B, Motsch B, Keilholz S, Alex M, Mehne D (2016) Puerperal and milk shedding of C. burnetii are associated with different immune profiles. Proceedings of the 29th World Buiatrics Congress, Dublin, Ireland, 3–8 July 2016, pp 429–30

  10. Born E (1981) Untersuchungen über den Einfluss der Schnittentbindung auf die Vitalität neugeborener Kälber. Doctoral thesis, University of Veterinary Medicine Hannover, Foundation, Hannover/Germany

  11. Chigerwe M, Tyler JW, Nagy DW, Middleton JR (2008) Frequency of detectable serum IgG concentrations in precolostral calves. Am J Vet Res 69:791–795

    Article  PubMed  Google Scholar 

  12. Conrad PA, Sverlow K, Anderson M, Rowe J, BonDurant R, Tuter G, Breitmeyer R, Palmer C, Thurmond M, Ardans A, Dubey JP, Duhamel G, Barr B (1993) Detection of serum antibody responses in cattle with natural or experimental Neospora infections. J Vet Diagn Investig 5:572–578

    CAS  Article  Google Scholar 

  13. Das DP, Malik SV, Rawool DB, Das S, Shoukat S, Gandham RK, Saxena S, Singh R, Doijad SP, Barbuddhe SB (2014) Isolation of Coxiella burnetii from bovines with history of reproductive disorders in India and phylogenetic inference based on the partial sequencing of IS1111 element. Infect Genet Evol 22:67–71

    CAS  Article  PubMed  Google Scholar 

  14. De Kruif A, Mansfeld R, Hoedemaker M (1998) Jungviehaufzucht und Färsenmanagement. In: De Kruif A, Mansfeld R, Hoedemaker M (eds) Tierärztliche Bestandsbetreuung beim Milchrind. Ferdinand Enke Verlag, Stuttgart, pp 183–214

    Google Scholar 

  15. Dupuis G, Péter O, Peacock M, Burgdorfer W, Haller E (1985) Immunglobulin responses in acute Q fever. J Clin Microbiol 22:484–487

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ellsworth MA, Fairbanks KK, Behan S, Jackson JA, Goodyear M, Oien NL, Meinert TR, Leyh RD (2006) Fetal protection following exposure to calves persistently infected with bovine viral diarrhea virus type 2 sixteen months after primary vaccination of the dams. Vet Ther 7:295–304

    PubMed  Google Scholar 

  17. Frangoulidis D, Walter MC, Antwerpen M, Zimmermann P, Janowetz B, Alex M, Boettcher J, Henning K, Hilbert A, Ganter M, Runge M, Münsterkötter M, Splettstoesser WD, Hanczaruk M (2014) Molecular analysis of Coxiella burnetii in Germany reveals evolution of unique clonal clusters. Int J Med Microbiol 304:868–876

    CAS  Article  PubMed  Google Scholar 

  18. Freick M, Enbergs H, Walraph J, Diller R, Weber J, Konrath A (2016) Coxiella burnetii: serological reactions and bacterial shedding in primiparous dairy cows in an endemically infected herd-impact on milk yield and fertility. Reprod Domest Anim 52:160–169

    Article  PubMed  Google Scholar 

  19. Freick M, Konrath A, Enbergs H, Diller R, Weber J, Walraph J (2017) Coxiella burnetii: decline of antibody response in multiparous dairy cows during dry period and maternal antibody levels in dairy calves in an endemically infected herd. Berl Munch Tieraerztl Wschrift 130:388-394

  20. Gabriël S, Ververken C, Vercruysse J, Duchateau L, Phiri IK, Goddeeris BM (2007) Perinatal priming of calves born to Schistosoma mattheei-infected dams. Vet Parasitol 144:61–67

    Article  PubMed  Google Scholar 

  21. García-Ispierto I, Nogareda C, Yániz JL, Almería S, Martínez-Bello D, de Sousa NM, Beckers JF, López-Gatius F (2010) Neospora caninum and coxiella burnetii seropositivity are related to endocrine pattern changes during gestation in lactating dairy cows. Theriogenology 74:212–220

    Article  PubMed  Google Scholar 

  22. Garcia-Ispierto I, Almería S, López-Gatius F (2011) Coxiella burnetii seropositivity is highly stable throughout gestation in lactating high-producing dairy cows. Reprod Domest Anim 46:1067–1072

    CAS  Article  PubMed  Google Scholar 

  23. Garcia-Ispierto I, Tutusaus J, López-Gatius F (2013) Does Coxiella burnetii affect reproduction in cattle? A clinical update. Reprod Domest Anim 49:529–535

    Article  Google Scholar 

  24. Hässig M, Gottstein B (2002) Epidemiological investigations of abortions due to Neospora caninum on Swiss dairy farms. Vet Rec 150:538–542

    Article  PubMed  Google Scholar 

  25. Jaton K, Peter O, Raoult D, Tissot JD, Greub G (2013) Development of a high throughput PCR to detect Coxiella burnetii and its application in a diagnostic laboratory over a 7-year period. New Microbes New Infect 1:6–12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Joulié A, Laroucau K, Bailly X, Prigent M, Gasqui P, Lepetitcolin E, Blanchard B, Rousset E, Sidi-Boumedine K, Jourdain E (2015) Circulation of Coxiella burnetii in a naturally infected flock of dairy sheep: shedding dynamics, environmental contamination, and genotype diversity. Appl Environ Microbiol 81:7253–7260

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kausch M (2009) Inzidenz und Ursachen von Totgeburten in einer Milchviehanlage in Brandenburg bei optimiertem Geburtsmanagement. Doctoral thesis, University of Veterinary Medicine Hannover, Foundation, Hannover/Germany

  28. Kyaw T, Suwimonteerabutr J, Virakul P, Lohachit C, Kalpravidh W (2005) Seronegative conversion in four Neospora caninum-infected cows, with a low rate of transplacental transmission. Vet Parasitol 131:145–150

    CAS  Article  PubMed  Google Scholar 

  29. LSI (Laboratoire Service International) – Life Technologies (2014) LSI VetMAX™ Coxiella burnetii Real-Time PCR Kit— absolute quantification: TaqMan® real-time PCR for the detection and quantification of Coxiella burnetii. Validation Report VAL0004400, RevA.00, December 8th 2014

  30. Meyer CL, Berger PJ, Koehler KJ, Thompson JR, Sattler CG (2001) Phenotypic trends in incidence of stillbirth for Holsteins in the United States. J Dairy Sci 84:515–523

    CAS  Article  PubMed  Google Scholar 

  31. Motsch B, Alves C, Janowetz B, Alex M, Meier N, Boettcher J (2016) Endemic infection with Coxiella burnetii in dairy cow herds follows a defined cycle. Proceedings of the 29th World Buiatrics Congress, Dublin, Ireland, 3–8 July 2016, pp 369–370

  32. Mülling M (1976) Asphyxie des neugeborenen Kalbes. Prakt Tierarzt 58:78–80

    Google Scholar 

  33. Murray RD, Williams AJ, Sheldon IM (2008) Field investigation of perinatal mortality in friesian cattle associated with myocardial degeneration and necrosis. Reprod Domest Anim 43:339–345

    CAS  Article  PubMed  Google Scholar 

  34. Nielsen KT, Nielsen SS, Agger JF, Christoffersen AB, Agerholm JS (2011) Association between antibodies to Coxiella burnetii in bulk tank milk and perinatal mortality of Danish dairy calves. Acta Vet Scand 53:64

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Nix JM, Spitzer JC, Grimes LW, Burns GL, Plyler BB (1997) A retrospective analysis of factors contributing to calf mortality and dystocia in cattle. Theriogenology 49:1515–1523

    Article  Google Scholar 

  36. Penny CD, Low JC, Nettleton PF, Scott PR, Sargison ND, Strachan WD, Honeyman PC (1996) Concurrent bovine viral diarrhoea virus and Salmonella typhimurium DT104 infection in a group of pregnant dairy heifers. Vet Rec 138:485–489

    CAS  Article  PubMed  Google Scholar 

  37. Schefers JM, Collins JE, Goyal SM, Ames TR (2009) Detection, characterization, and control of bovine viral diarrhea virus infection in a large commercial dairy herd. Can Vet J 50:1075–1079

    PubMed  PubMed Central  Google Scholar 

  38. Seo MG, Ouh IO, Lee SH, Kwak D (2016) Detection and genotyping of Coxiella burnetii in pigs, South Korea, 2014-2015. Emerg Infect Dis 22:2192–2195

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shannon JG, Heinzen RA (2009) Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol Res 43:1–3

    Article  Google Scholar 

  40. Tutusaus J, López-Gatius F, Almería S, Serrano B, Monleón E, José Badiola J, García-Ispierto I (2013) No detectable precolostral antibody response in calves born from cows with cotyledons positive for Coxiella burnetii by quantitative PCR. Acta Vet Hung 61:432–441

    Article  PubMed  Google Scholar 

  41. Tutusaus J, Garcia-Ispierto I, López-Gatius F (2015) Coxiella burnetii antibody dynamics in heifers born to vaccinated versus non-vaccinated dams in a chronically infected dairy herd. Acta Vet Hung 63:337–346

    CAS  Article  PubMed  Google Scholar 

  42. Walsh SW, Williams EJ, Evans AC (2011) A review of the causes of poor fertility in high milk producing dairy cows. Anim Reprod Sci 123:127–138

  43. Walz PH, Grooms DL, Passler T, Ridpath JF, Tremblay R, Step DL, Callan RJ, Givens MD (2010) Control of bovine viral diarrhea virus in ruminants. J Vet Intern Med 24:476–486

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the executive board of the dairy farm for giving the opportunity to realize this study, the Saxon Animal Health Fund for funding the study, and Dr. Jens Böttcher and Britta Janowetz (Bavarian Animal Health Service, Poing/Germany) for the serological investigation using phase-specific ELISAs. Special thanks go to the staff of the farm (especially Ilona Sieber and Andrea Endtmann) and the laboratory staff for expert technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Markus Freick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Freick, M., Konrath, A., Enbergs, H. et al. Detection of Coxiella burnetii DNA and anti-Coxiella burnetii IgG antibodies in precolostral blood samples of stillborn calves in an endemically infected Holstein dairy herd. Folia Microbiol 63, 253–260 (2018). https://doi.org/10.1007/s12223-017-0553-4

Download citation