Advertisement

Folia Microbiologica

, Volume 63, Issue 2, pp 197–201 | Cite as

Analysis of Streptomyces coelicolor M145 genes SCO4164 and SCO5854 encoding putative rhodaneses

  • Tetiana Gren
  • Bohdan Ostash
  • Volodymyr Babiy
  • Ihor Rokytskyy
  • Victor FedorenkoEmail author
Original Article

Abstract

Streptomyces coelicolor genome carries two apparently paralogous genes, SCO4164 and SCO5854, that encode putative thiosulfate sulfurtransferases (rhodaneses). These genes (and their presumed translation products) are highly conserved and widely distributed across actinobacterial genomes. The SCO4164 knockout strain was unable to grow on minimal media with either sulfate or sulfite as the sole sulfur source. The SCO5854 mutant had no growth defects in the presence of various sulfur sources; however, it produced significantly less amounts of actinorhodin. Furthermore, we discuss possible links between basic interconversions of inorganic sulfur species and secondary metabolism in S. coelicolor.

Notes

Acknowledgements

This work was supported by grants Bg-46F (to V.O.) and Bg-41Nr (to B.O.) from Ministry of Education and Science of Ukraine. T.G. was supported by DAAD fellowships. Prof. Paul Dyson (Swansea University, UK) is thanked for cosmids from S. coelicolor transposon library. We thank Lijiang Song (Univerity of Warwick, UK) for proofreading the manuscript.

Supplementary material

12223_2017_551_MOESM1_ESM.pdf (902 kb)
ESM 1 (PDF 902 kb)

References

  1. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43.  https://doi.org/10.1128/MMBR.00019-15 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bishop A, Fielding S, Dyson P, Herron P (2004) Systematic insertional mutagenesis of streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res 14:893–900.  https://doi.org/10.1101/gr.1710304 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cipollone R, Ascenzi P, Visca P (2007) Common themes and variations in the rhodanese superfamily. IUBMB Life 59(2):51–19.  https://doi.org/10.1080/15216540701206859 CrossRefPubMedGoogle Scholar
  4. Chang Z, Vining LC (2002) Biosynthesis of sulfur-containing amino acids in Streptomyces venezuelae ISP5230: roles for cystathionine beta-synthase and transsulfuration. Microbiology 148(7):2135–2247CrossRefPubMedGoogle Scholar
  5. Dereeper A, Guignon V, Blanc G, Audic S et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acid Res 36:W465–W469.  https://doi.org/10.1093/nar/gkn180 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Donadio S, Shafiee A, Hutchinson CR (1990) Disruption of a rhodaneselike gene results in cysteine auxotrophy in Saccharopolyspora erythraea. J Bacteriol 172(1):350–360CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24(1):162–190.  https://doi.org/10.1039/b507395m CrossRefPubMedGoogle Scholar
  8. Hodgson DA (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238CrossRefPubMedGoogle Scholar
  9. Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih CJ, Kao CM, Buttner MJ, Cohen SN (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276-1287CrossRefPubMedGoogle Scholar
  10. Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA, Beppu T (1992) A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174:7585–7594CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ, Kim BG, Roe JH, Kim SC, Smith CP, Cho BK (2016) The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat Commun 7:11605.  https://doi.org/10.1038/ncomms11605 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  13. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  14. Kitano K, Nozaki Y, Imada A (1985) Selective accumulation of unsulfated carbapenem antibiotics by sulfate transport negative mutants of S. griseus subsp. cryophilus. Agric Biol Chem 49:677–684Google Scholar
  15. Kredich NM (2008) Biosynthesis of cysteine. EcoSal Plus 3(1):1–30.  https://doi.org/10.1128/ecosalplus.3.6.1.11 CrossRefGoogle Scholar
  16. Lee EJ, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH (2005 Sep) A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57(5):1252–1264CrossRefPubMedGoogle Scholar
  17. Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165CrossRefPubMedGoogle Scholar
  18. Lydiate DJ, Mendez C, Kieser HM, Hopwood DA (1988) Mutation and cloning of clustered Streptomyces genes essential for sulfate metabolism. Mol Gen Genet 211:415–423CrossRefGoogle Scholar
  19. Marzluf GA (1997) Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51:73–96CrossRefPubMedGoogle Scholar
  20. Mueller EG (2006) Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2(4):185–194.  https://doi.org/10.1038/nchembio779 CrossRefPubMedGoogle Scholar
  21. Nárdiz N, Santamarta I, Lorenzana LM, Martín JF, Liras P (2011) A rhodanese-like protein is highly overrepresented in the mutant S. clavuligerus oppA2::aph: effect on holomycin and other secondary metabolites production. Microb Biotechnol 4(2):216–225.  https://doi.org/10.1111/j.1751-7915.2010.00222.x CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Pühler A, Kalinowski J (2005) Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6:121CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rückert C (2016) Sulfate reduction in microorganisms – recent advances and biotechnological applications. Curr Opin Microbiol 33:140–146.  https://doi.org/10.1016/j.mib.2016.07.007 CrossRefPubMedGoogle Scholar
  24. Sambrook J, Russell DW (2001) Molecular Cloning: a Laboratory Manual, 3rd edn. NY: Cold Spring Harbor LaboratoryGoogle Scholar
  25. Sienko M, Natorff R, Skoneczny M, Kruszewska J, Paszewski A, Brzywczy J (2014) Regulatory mutations affecting sulfur metabolism induce environmental stress response in Aspergillus nidulans. Fungal Genet Biol 65:37–47.  https://doi.org/10.1016/j.fgb.2014.02.001 CrossRefPubMedGoogle Scholar
  26. Vandenbergh PA, Bawdon RE, Berk RS (1979) Rapid test for determining the intracellular rhodanese activity of various bacteria. Int J Syst Bacteriol 29(4):339–344CrossRefGoogle Scholar
  27. Zeng L, Shi T, Zhao Q, Xie J (2013) Mycobacterium sulfur metabolism and implications for novel drug targets. Cell Biochem Biophys 65(2):77–83.  https://doi.org/10.1007/s12013-012-9410-x CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Tetiana Gren
    • 1
    • 2
  • Bohdan Ostash
    • 1
  • Volodymyr Babiy
    • 1
  • Ihor Rokytskyy
    • 1
  • Victor Fedorenko
    • 1
    Email author
  1. 1.Department of Genetics and BiotechnologyIvan Franko National University of LvivLvivUkraine
  2. 2.Microbial Genomics and Biotechnology, Center for BiotechnologyBielefeld UniversityBielefeldGermany

Personalised recommendations