Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge

Abstract

The inactivation of four micromycete species by action of non-thermal plasma was followed. Two sources of plasma were compared, namely, positive corona discharge and dielectric barrier discharge. The corona discharge appeared as suitable for fungal spore inactivation in water suspension, whereas the barrier discharge inactivated spores on the surface of cultivation agar. Cladosporium sphaerospermum was the most sensitive, being inactivated within 10 min of exposure to plasma, whereas Aspergillus oryzae displayed decrease in viable cell count only, the complete inactivation was not achieved even after 40 min of exposure. Intermediate sensitivity was found for Alternaria sp. and Byssochlamys nivea. The significant delay of growth was observed for all fungi after exposure to sublethal dose of plasma, but we failed to express this effect quantitatively.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akishev Y, Grushin M, Karalnik V, Trushkin N, Kholodenko V, Chugunov V, Kobzev E, Zhirkova N, Irkhina I, Koreev G (2008) Atmospheric-pressure, nonthermal plasma sterilization of microorganisms in liquids and on surfaces. Pure Appl Chem 80:1953–1969. doi:10.1351/pac200880091953

    CAS  Article  Google Scholar 

  2. Cha S, Park YS (2014) Plasma in dentistry. Clin Plasma Med 2:4–10. doi:10.1016/j.cpme.2014.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann K-D (2010) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D ApplPhys 44:13002. doi:10.1088/0022-3727/44/1/013002

    Article  Google Scholar 

  4. Elmoualij B, Thellin O, Gofflot S, Heinen E, Levif P, Séguin J, Moisan M, Leduc A, Barbeau J, Zorzi W (2012) Decontamination of prions by the flowing afterglow of a reduced-pressure N2–O2 cold-plasma. Plasma Process Polym 9:612–618. doi:10.1002/ppap.201100194

    CAS  Article  Google Scholar 

  5. Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001. doi:10.1088/0022-3727/45/26/263001

    Article  Google Scholar 

  6. Haertel B, von Woedtke T, Weltmann K-D, Lindequist U (2014) Non-thermal atmospheric pressure plasma possible application in wound healing. Biomol Ther 22:477–490. doi:10.4062/biomolther.2014.105

    CAS  Article  Google Scholar 

  7. Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann JL, Shimizu T, Karrer S (2010) Plasma medicine: possible applications in dermatology. JDDG – J German Soc Dermatol 8:968–976. doi:10.1111/j.1610-0387.2010.07495.x

    Google Scholar 

  8. Isbary G, Shimizu T, Zimmermann J, Heinlin J, Al-Zaabi S, Rechfeld M, Morfill GE, Karrer S, Stolz W (2014) Randomized placebo-controlled clinical trial showed cold atmospheric argon plasma relieved acute pain and accelerated healing in herpes zoster. Clin Plasma Med 2:50–55. doi:10.1016/j.cpme.2014.07.001

    Article  Google Scholar 

  9. Julák J, Scholtz V (2013) Decontamination of human skin by low-temperature plasma produced by cometary discharge. Clin Plasma Med 1:31–34. doi:10.1016/j.cpme.2013.09.002

    Article  Google Scholar 

  10. Julák J, Kříha V, Scholtz V (2006) Corona discharge: a simple method of its generation and study of its bactericidal properties. Czechoslov J Phys 56:B1333–B1338. doi:10.1007/s10582-006-0370-5

    Article  Google Scholar 

  11. Julák J, Janoušková O, Scholtz V, Holada K (2011) Inactivation of prions using electrical DC discharges at atmospheric pressure and ambient temperature. Plasma Process Polym 8:316–323. doi:10.1002/ppap.201000100

    Article  Google Scholar 

  12. Kelly S, Turner MM (2013) Atomic oxygen patterning from a biomedical needle-plasma source. J Appl Phys 114:123301. doi:10.1063/1.4821241

    Article  Google Scholar 

  13. Khamsen N, Onwimol D, Teerakawanich N, Dechanupaprittha S, Kanokbannakorn W, Hongesombut K, Srisonphan S (2016) Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Appl Mater Interfaces 8:19268–19275. doi:10.1021/acsami.6b04555

    CAS  Article  PubMed  Google Scholar 

  14. Klebes M, Lademann J, Philipp S, Ulrich C, Patzelt A, Ulmer M, Kluschke F, Kramer A, Weltmann KD, Sterry W, Lange-Asschenfeldt B (2014) Effects of tissue-tolerable plasma on psoriasis vulgaris treatment compared to conventional local treatment: a pilot study. Clin Plasma Med 2:22–27. doi:10.1016/j.cpme.2013.11.002

    Article  Google Scholar 

  15. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van Dijk J, Zimmermann J (2009) Plasma medicine: an introductory review. New J Phys 11:115012. doi:10.1088/1367-2630/11/11/115012

    Article  Google Scholar 

  16. Laroussi M (2009) Low-temperature plasmas for medicine? IEEE Trans Plasma Sci 37:714–725. doi:10.1109/TPS.2009.2017267

    CAS  Article  Google Scholar 

  17. Latgé J-P (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279-290. doi:10.1111/j.1365-2958.2007.05872.x

  18. Lloyd G, Friedman G, Jafri S, Schultz G, Fridman A, Harding K (2010) Gas plasma: medical uses and developments in wound care. Plasma Process Polymers 7:194–211. doi:10.1002/ppap.200900097

    CAS  Article  Google Scholar 

  19. Matthes R, Koban I, Bender C, Masur K, Kindel E, Weltmann K-D, Kocher T, Kramer A, Hübner N-O (2013) Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis. Plasma Process Polym 10:161–166. doi:10.1002/ppap.201100133

    CAS  Article  Google Scholar 

  20. Mizuno A, Hori Y (1988) Destruction of living cells by pulsed high-voltage application. IEEE Trans Industry Appl 24:387–394. doi:10.1109/28.2886

    Article  Google Scholar 

  21. Moreau M, Orange N, Feuilloley M (2008) Non-thermal plasma technologies: new tools for biodecontamination. Biotechnol Advances 26:610–617. doi:10.1016/j.biotechadv.2008.08.001

    CAS  Article  Google Scholar 

  22. Nosenko T, Shimizu T, Morfill G (2009) Designing plasmas for chronic wound disinfection. New J Phys 11:115013. doi:10.1088/1367-2630/11/11/115013

    Article  Google Scholar 

  23. Ouf SA, El-Adly AA, Mohamed AAH (2015) Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi. J Med Microbiol 64:1151–1161. doi:10.1099/jmm.0.000133

    CAS  Article  PubMed  Google Scholar 

  24. Schlegel J, Köritzer J, Boxhammer V (2013) Plasma in cancer treatment. Clin Plasma Med 1:2–7. doi:10.1016/j.cpme.2013.08.001

    Article  Google Scholar 

  25. Scholtz V, Julák J, Kříha V (2010) The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Process Polym 7:237–243. doi:10.1002/ppap.200900072

    CAS  Article  Google Scholar 

  26. Scholtz V, Pazlarová J, Souškova H, Khun J, Julák J (2015a) Nonthermal plasma—a tool for decontamination and disinfection. Biotechnol Advances 33:1108–1119. doi:10.1016/j.biotechadv.2015.01.002

    CAS  Article  Google Scholar 

  27. Scholtz V, Soušková H, Hubka V, Švarcová M, Julák J (2015b) Inactivation of human pathogenic dermatophytes by non-thermal plasma. J Microbiol Meth 119:53–58. doi:10.1016/j.mimet.2015.09.017

    CAS  Article  Google Scholar 

  28. Scholtz V, Soušková H, Švarcová M, Kříha V, Živná H, Julák J (2017) Inactivation of dermatophyte infection by non-thermal plasma on animal model. Med Mycol 55:422–428. doi:10.1093/mmy/myw094

    PubMed  Google Scholar 

  29. Sláma J, Kříha V, Julák J, Fantova V (2013) Comparison of dielectric barrier discharge modes fungicidal effect on Candida albicans growth. Probl Atom Sci Technol 83:237–239 http://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_1/article_2013_1_237.pdf

    Google Scholar 

  30. Soušková H, Scholtz V, Julák J, Kommová L, Savická D, Pazlarová J (2011) The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia microbiol 56:77–79. doi:10.1007/s12223-011-0005-5

    Article  Google Scholar 

  31. Soušková H, Scholtz V, Julák J, Savická D (2012) The fungal spores survival under the low-temperature plasma. In: Hensel K, Machala Z, Akishev Y (eds) Plasma for bio-decontamination, medicine and food security. Springer, Dordrecht, pp 57–66. doi:10.1007/978-94-007-2852-3

    Google Scholar 

  32. Švarcová M, Julák J, Hubka V, Soušková H, Scholtz V (2014) Treatment of a superficial mycosis by low-temperature plasma: a case report. Prague Med Rep 115:73–78. doi:10.14712/23362936.2014.8

    Article  PubMed  Google Scholar 

  33. Sysolyatina E, Mukhachev A, Yurova M, Grushin M, Karalnik V, Petryakov A, Trushkin N, Ermolaeva S, Akishev Y (2014) Role of the charged particles in bacteria inactivation by plasma of a positive and negative corona in ambient air. Plasma Process Polym 11:315–334. doi:10.1002/ppap.201300041

    CAS  Article  Google Scholar 

  34. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B: Atomic Spectroscopy 61:2–30. doi:10.1016/j.sab.2005.10.003

    Article  Google Scholar 

  35. von Woedtke T, Haertel B, Weltmann K-D, Lindequist U (2013a) Plasma pharmacy—physical plasma in pharmaceutical applications. Pharmazie 68:492–498. doi:10.4062/biomolther.2014.105

    Google Scholar 

  36. von Woedtke T, Reuter S, Masur K, Weltmann K-D (2013b) Plasmas for medicine. Phys Rep 530:291–320. doi:10.1016/j.phys rep.2013.05.005

    Article  Google Scholar 

  37. Yousfi M, Merbahi N, Sarrette J, Eichwald O, Ricard A, Gardou J, Ducasse O, Benhenni M (2011) Non thermal plasma sources of production of active species for biomedical uses: analyses, optimization and prospect. In: Fazel-Rezai R (ed) Biomedical Engineering–Frontiers and challenges. InTech, Rijeka, pp 99–124

    Google Scholar 

Download references

Acknowledgements

This study has been supported by grants MSM ČR 002162080 and SVV-2012-264506.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Julák.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Julák, J., Soušková, H., Scholtz, V. et al. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol 63, 63–68 (2018). https://doi.org/10.1007/s12223-017-0535-6

Download citation