Skip to main content
Log in

Molecular typing and antimicrobial susceptibility testing to six antimicrobials of Clostridium difficile isolates from three Czech hospitals in Eastern Bohemia in 2011–2012

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

In 2011–2012, a survey was performed in three regional hospitals in the Czech Republic to determine the incidence of Clostridium difficile infections (CDIs) and to characterize bacterial isolates. C. difficile isolates were characterized by PCR ribotyping, toxin genes detection, multiple-locus variable-number tandem-repeat analysis (MLVA), and antimicrobial susceptibility testing to fidaxomicin, vancomycin, metronidazole, clindamycin, LFF571, and moxifloxacin using agar dilution method. The incidence of CDI in three studied hospitals was 145, 146, and 24 cases per 100,000 inhabitants in 2011 and 177, 258, and 67 cases per 100,000 inhabitants in 2012. A total of 64 isolates of C. difficile was available for molecular typing and antimicrobial susceptibility testing. 60.9% of the isolates were classified as ribotype 176. All 41 isolates of ribotypes 176 and 078 were positive for the presence of binary toxin genes. Ribotype 176 also carried 18-bp deletion in the regulatory gene tcdC. Tested isolates of C. difficile were fully susceptible to vancomycin and metronidazole, whereas 65.1% of the isolates were resistant to moxifloxacin. MLVA results indicated that isolates from three different hospitals were genetically related, suggesting transmission between healthcare facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bakker D, Smits WK, Kuijper EJ, Corver J (2012) TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm. PLoS One. doi:10.1371/journal.pone.0043247

    Google Scholar 

  • Bauer MP, Notermans DW, van Benthem BH, ECDIS Study Group et al (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet. doi:10.1016/S0140-6736(10)61266-4

    Google Scholar 

  • Beran V, Chmelar D, Vobejdova J et al (2014) Sensitivity to antibiotics of Clostridium difficile toxigenic nosocomial strains. Folia Microbiol (Praha). doi:10.1007/s12223-013-0283-1

    Google Scholar 

  • van den Berg RJ, Schaap I, Templeton KE et al (2007) Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J Clin Microbiol 45:1024–1028

    Article  PubMed  Google Scholar 

  • Bidet P, Barbut F, Lalande V et al (1999) Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 175:261–266

    Article  CAS  PubMed  Google Scholar 

  • Burke KE, Lamont JT (2014) Clostridium difficile infection: a worldwide disease. Gut Liver. doi:10.5009/gnl.2014.8.1.1

    PubMed  PubMed Central  Google Scholar 

  • Clinical and Laboratory Standards Institute (2007) Methods for antimicrobial susceptibility testing of anaerobic bacteria; approved standard–seventh edition. CLSI document M11-A7 [ISBN 1–56238–626-3]. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • Corbett D, Wise A, Birchall S et al (2015) In vitro susceptibility of Clostridium difficile to SMT19969 and comparators, as well as the killing kinetics and post-antibiotic effects of SMT19969 and comparators against C. difficile. J Antimicrob Chemother. doi:10.1093/jac/dkv006

    PubMed  PubMed Central  Google Scholar 

  • Cowardin CA, Buonomo EL, Saleh MM et al (2016) The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat Microbiol. doi:10.1038/nmicrobiol.2016.108

    PubMed  PubMed Central  Google Scholar 

  • Debast SB, Bauer MP, Sanders IM, ECDIS Study Group et al (2013) Antimicrobial activity of LFF571 and three treatment agents against Clostridium difficile isolates collected for a pan-European survey in 2008: clinical and therapeutic implications. J Antimicrob Chemother. doi:10.1093/jac/dkt013

    PubMed  Google Scholar 

  • Drabek J, Nyc O, Krutova M et al (2015) Clinical features and characteristics of Clostridium difficile PCR-ribotype 176 infection: results from a 1-year university hospital internal ward study. Ann Clin Microbiol Antimicrob. doi:10.1186/s12941-015-0114-0

    PubMed  PubMed Central  Google Scholar 

  • Farrow KA, Lyras D, Rood JI (2000) The macrolide-lincosamide-streptogramin B resistance determinant from Clostridium difficile 630 contains two erm (B) genes. Antimicrob Agents Chemother 44:411–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawley WN, Knetsch CW, MacCannell DR et al (2015) Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One. doi:10.1371/journal.pone.0118150

    Google Scholar 

  • Fenner L, Frei R, Gregory M et al (2008) Epidemiology of Clostridium difficile-associated disease at university hospital Basel including molecular characterisation of the isolates 2006-2007. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-008-0564-9

    Google Scholar 

  • Freeman J, Vernon J, Morris K, Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group et al (2015) Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect. doi:10.1016/j.cmi.2014.09.017

    PubMed  Google Scholar 

  • Goorhuis A, Bakker D, Corver J et al (2008) Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis. doi:10.1086/592257

    Google Scholar 

  • Hintze J (2012) NCSS 8. NCSS, LLC, Kaysville www.ncss.com

    Google Scholar 

  • Indra A, Schmid D, Huhulescu S et al (2008) Characterization of clinical Clostridium difficile isolates by PCR ribotyping and detection of toxin genes in Austria, 2006-2007. J Med Microbiol. doi:10.1099/jmm.0.47476-0

    PubMed Central  Google Scholar 

  • Krutova M, Matejkova J, Nyc O (2014) C. difficile Ribotype 027 or 176? Folia Microbiol (Praha). doi:10.1007/s12223-014-0323-5

    Google Scholar 

  • Krutova M, Matejkova J, Tkadlec J, Nyc O (2015) Antibiotic profiling of Clostridium difficile ribotype 176--a multidrug resistant relative to C. difficile ribotype 027. Anaerobe. doi:10.1016/j.anaerobe.2015.07.009

    PubMed  Google Scholar 

  • Lachowicz D, Pituch H, Obuch-Woszczatynski P (2015) Antimicrobial susceptibility patterns of Clostridium difficile strains belonging to different polymerase chain reaction ribotypes isolated in Poland in 2012. Anaerobe. doi:10.1016/j.anaerobe.2014.09.004

    PubMed  Google Scholar 

  • Luebbert C, John E, von Mueller L (2014) Clostridium difficile infection: guideline-based diagnosis and treatment. Dtsch Arztebl Int. doi:10.3238/arztebl.2014.0723

    Google Scholar 

  • Marsh JW, O’Leary MM, Shutt KA et al (2006) Multilocus variable-number tandem-repeat analysis for investigation of Clostridium difficile transmission in hospitals. J Clin Microbiol 44:2558–2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matamouros S, England P, Dupuy B (2007) Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64:1274–1288

    Article  CAS  PubMed  Google Scholar 

  • Nyc O, Pituch H, Matejkova J et al (2011) Clostridium difficile PCR ribotype 176 in the Czech Republic and Poland. Lancet. doi:10.1016/S0140-6736(11)60575-8

    PubMed  Google Scholar 

  • Obuch-Woszczatynski P, Lachowicz D, Schneider A et al (2014) Occurrence of Clostridium difficile PCR-ribotype 027 and it’s closely related PCR-ribotype 176 in hospitals in Poland in 2008-2010. Anaerobe. doi:10.1016/j.anaerobe.2014.04.007

    Google Scholar 

  • Paltansing S, van den Berg RJ, Guseinova RA et al (2007) Characteristics and incidence of Clostridium difficile-associated disease in the Netherlands, 2005. Clin Microbiol Infect 13:1058–1064

    Article  CAS  PubMed  Google Scholar 

  • Persson S, Torpdahl M, Olsen KE (2008) New multiplex PCR method for the detection of Clostridium difficile toxin a (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. doi:10.1111/j.1469-0691.2008.02092.x

    Google Scholar 

  • Polivkova S, Krutova M, Petrlova K et al (2016) Clostridium difficile ribotype 176 - a predictor for high mortality and risk of nosocomial spread? Anaerobe. doi:10.1016/j.anaerobe.2016.05.002

    PubMed  Google Scholar 

  • Razavi B, Apisarnthanarak A, Mundy LM (2007) Clostridium difficile: emergence of hypervirulence and fluoroquinolone resistance. Infection 35:300–307

    Article  CAS  PubMed  Google Scholar 

  • Rupnik M, Wilcox MH, Gerding DN (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. doi:10.1038/nrmicro2164

    PubMed  Google Scholar 

  • Rupnik M, Tambic Andrasevic A, Trajkovska Dokic E et al (2016) Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four south eastern European countries. Anaerobe. doi:10.1016/j.anaerobe.2016.10.005

    Google Scholar 

  • Spigaglia P, Mastrantonio P (2002) Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40:3470–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart DB, Berg A, Hegarty J (2013) Predicting recurrence of C. difficile colitis using bacterial virulence factors: binary toxin is the key. J Gastrointest Surg. doi:10.1007/s11605-012-2056-6

    Google Scholar 

  • Stubbs SL, Brazier JS, O'Neill GL, Duerden BI (1999) PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terhes G, Urban E, Soki J et al (2009) Assessment of changes in the epidemiology of Clostridium difficile isolated from diarrheal patients in Hungary. Anaerobe. doi:10.1016/j.anaerobe.2009.01.010

    Google Scholar 

  • The European Committee on Antimicrobial Susceptibility Testing (2016) Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0. http://www.eucast.org

  • Tickler IA, Goering RV, Whitmore JD, Healthcare Associated Infection Consortium et al (2014) Strain types and antimicrobial resistance patterns of Clostridium difficile isolates from the United States, 2011 to 2013. Antimicrob Agents Chemother. doi:10.1128/AAC.02775-13

    PubMed  PubMed Central  Google Scholar 

  • Valiente E, Dawson LF, Cairns MD et al (2012) Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol. doi:10.1099/jmm.0.036194-0

    PubMed  Google Scholar 

  • Wilcox MH, Shetty N, Fawley WN et al (2012) Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin Infect Dis 55:1056–1063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project Postdoc 2, University of Ostrava [Strengthening research institutions at the University of Ostrava, grant number CZ.1.07/2.3.00/30.0047]. The project was co-financed by the European Social Fund in the Czech Republic; the European Union and the Ministry of Education, Youth and Sports of the Czech Republic under the Operational Programme Education for Competitiveness.

Authors’ contributions

VB: the author of the article and scenario of experiments, and article writing.

EJK: organization of experimental work in Leiden laboratories, suggestions, and checking the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Beran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(XLS 52 kb)

ESM 2

(XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beran, V., Kuijper, E.J., Harmanus, C. et al. Molecular typing and antimicrobial susceptibility testing to six antimicrobials of Clostridium difficile isolates from three Czech hospitals in Eastern Bohemia in 2011–2012. Folia Microbiol 62, 445–451 (2017). https://doi.org/10.1007/s12223-017-0515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-017-0515-x

Keywords

Navigation