Folia Microbiologica

, Volume 62, Issue 4, pp 305–315 | Cite as

Soil myxobacteria as a potential source of polyketide-peptide substances

  • Ivana Charousová
  • Heinrich Steinmetz
  • Juraj Medo
  • Soňa Javoreková
  • Joachim Wink


Myxobacteria, a group of antimicrobial producing bacteria, have been successfully cultured and characterized from ten soil samples collected from different parts of Slovakia. A total of 79 myxobacteria belonging to four genera (Myxococcus, Corallococcus, Sorangium, and Polyangium) were isolated based on aspects of their life cycle. Twenty-five of them were purified, fermented, and screened for antimicrobial activities against 11 test microorganisms. Results indicated that crude extracts showed more significant activities against Gram-positive than against Gram-negative bacteria or fungi. Based on a higher degree and broader range of antimicrobial production, the two most potential extracts (K9-5, V3-1) were selected for HPLC fractionation against Micrococcus luteus and Staphylococcus aureus and LC/MS analysis of potential antibiotic metabolites. The analysis resulted in the identification of polyketide-peptide antibiotics, namely corallopyronin A and B (K9-5) and myxalamid B and C (V3-1), which were responsible for important Gram-positive activity in the observed strains. A sequence similarity search through BLAST revealed that these strains showed the highest sequence similarity to Corallococcus coralloides (K9-5, NCBI accession number KX256198) and Myxococcus xanthus (V3-1, NCBI accession number KX256197). Although screening of myxobacteria is laborious, due to difficulties in isolating cultures, this research represented the first report covering the isolation and cultivation of this challenging bacterial group from Slovakian soils as well as the screening of their antimicrobial activity, cultural identification, and secondary metabolite identification.


Myxobacteria Soil Myxalamids Corallopyronins 16S rRNA 



The author is grateful to the Helmholtz Centre for Infection Research (Microbial Strain Collection Group), Braunschweig, Germany, for the scholarship and supporting of the results. This study was also supported by the Europien Community under project no. 26220220180: Building Research Centre Agrobiotech.


  1. Ahn J, Li XM, Zee O (2007) Soraphinol B, a new acyloin compound produced by Sorangium cellulosum. Bull Kor Chem Soc 28:1215–1216. doi: 10.1002/chin.200749208 CrossRefGoogle Scholar
  2. Belogurov GA, Vassylyeva MN, Sevostyanova A, Appleman JR, Xiang AX, Lira R, Webber SE, Klyuyev S, Nudler E, Artsimovitch I, Vassylyev DG (2009) Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457:332–335. doi: 10.1038/nature07510 CrossRefPubMedGoogle Scholar
  3. Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–957. doi: 10.1111/j.1574-6976.2009.00185.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bode HB, Müller R (2006) Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol 33:577–588. doi: 10.1007/s10295-006-0082-7 CrossRefGoogle Scholar
  5. Cane DE (1997) Polyketide and nonribosomal polypeptide biosynthesis. Chem Rev 97:2463–2706. doi: 10.1021/cr970097g CrossRefPubMedGoogle Scholar
  6. Cazin J, Wiemer DF, Howard JJ (1989) Isolation, growth characteristics, and long-term storage of fungi cultivated by attine ants. App Environ Microbiol 55:1346–1350Google Scholar
  7. Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427. doi: 10.1111/j.1574-6976.2000.tb00548.x CrossRefPubMedGoogle Scholar
  8. Erol O, Schaberle TF, Schmitz A, Konig GM (2010) Biosynthesis of the myxobacterial antibiotic corallopyronin A. Chembiochem 11:1253–1265. doi: 10.1002/cbic.201000085 CrossRefPubMedGoogle Scholar
  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. doi: 10.1007/bf01734359 CrossRefPubMedGoogle Scholar
  10. Gaspari F, Paitan Y, Mainini M, Losi D, Ron EZ, Marinelli F (2005) Myxobacteria isolated in Israel as potential source of new anti-infectives. J Appl Microbiol 98:429–439. doi: 10.1111/j.1365-2672.2004.02477.x CrossRefPubMedGoogle Scholar
  11. Gebreyohannes G, Moges F, Sahile S, Raja N (2013) Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of lake Tana, Ethiopia. Asian Pac J Trop Biomed 3:426–435. doi: 10.1016/s2221-1691(13)60092-1 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gerth K, Jansen R, Reifenstahl G, Thierbach G (1983) The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). I. Production, physico-chemical and biological properties, and mechanism of action. J Antibiot 36:1150–1156. doi: 10.7164/antibiotics.36.1150 CrossRefPubMedGoogle Scholar
  13. Gerth K, Trowitzsch W, Piehl G, Schultze R, Lehmann J (1984) Inexpensive media for mass cultivation of myxobacteria. Appl Microbiol Biotechnol 19:23–28. doi: 10.1007/bf00252812 CrossRefGoogle Scholar
  14. Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253. doi: 10.1016/j.jbiotec.2003.07.015 CrossRefPubMedGoogle Scholar
  15. Irschik H, Jansen R, Hofle G, Gerth K, Reichenbach H (1985) The corallopyronins, new inhibitors of bacterial RNA synthesis from myxobacteria. I Antibiot 38:145–152. doi: 10.7164/antibiotics.38.145 CrossRefGoogle Scholar
  16. Jansen R, Irschik H, Reichenbach H, Höfle G (1985) Corallopyronin A, B, and C: three novel antibiotics from Corallocuccus coralloides Cc c127 (Myxobacterales). Liebigs Ann Chem 4:822–836. doi: 10.1002/chin.198533371 CrossRefGoogle Scholar
  17. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow (eds) Nucleic acid techniques in bacterial systematics. Wiley, UK, pp 115–176Google Scholar
  18. Lang E, Stackebrandt E (2009) Emended descriptions of the genera Myxococcus and Corallococcus, typification of the species Myxococcus stipitatus and Myxococcus macrosporus and a proposal that they be represented by neotype strains. Request for an opinion. Int J Syst Evol Microbiol 59:2122–2128. doi: 10.1099/ijs.0.003566-0 CrossRefPubMedGoogle Scholar
  19. McBride MJ, Zusman DR (1996) Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. FEMS Microbiol Lett 137:227–231. doi: 10.1111/j.1574-6968.1996.tb08110.x CrossRefPubMedGoogle Scholar
  20. Mohr KI, Stechling M, Wink J, Wilharm E, Stadler M (2015) Comparison of myxobacterial diversity and evaluation of isolation success in two niches: Kiritimati Island and German compost. Microbiol open 5:268–278. doi: 10.1002/mbo3.325 CrossRefGoogle Scholar
  21. Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B, Sarafianos S, Tuske S, Patel J, Jansen R, Irschik H, Arnold E, Ebright RH (2008) The RNA polymerase “switch region” is a target for inhibitors. Cell 135:295–307. doi: 10.3410/f.1157302.617440 CrossRefPubMedPubMedCentralGoogle Scholar
  22. O’Neill A, Oliva B, Storey C, Hoyle A, Fishwick C, Chopra I (2000) RNA polymerase inhibitors with activity against rifampicin-resistant mutants of Staphylococcus aureus. Antimicrob Ag Chemother 44:3163–3166. doi: 10.1128/aac.44.11.3163-3166.2000 CrossRefGoogle Scholar
  23. Reichenbach H (1986) The myxobateria: common organisms with uncommon behaviour. Microbiol Sc 3:268–274Google Scholar
  24. Reichenbach H (1993) Biology of the myxobacteria: ecology and taxonomy. In: Dworkin M, Kaiser D (eds) Myxobacteria II. ASM Press, Washington DC, pp 13–62Google Scholar
  25. Reichenbach H (2001) Myxobacteria producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:1057–1098. doi: 10.1038/sj.jim.7000025 CrossRefGoogle Scholar
  26. Reichenbach H (2005) Genus II. Corallococcus gen. Nov. (Chondrococcus Jahn 1924, 85). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey's manual of systematic bacteriology. Springer, New York, pp 1079–1082CrossRefGoogle Scholar
  27. Reichenbach H, Dworkin M (1992) The myxobacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3417–3487Google Scholar
  28. Shimkets L, Dworkin M, Reichenbach H (2006) The myxobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackenbrandt E (eds) The prokaryotes. Springer, New York, pp 31–115CrossRefGoogle Scholar
  29. Schäberle TF, Mohseni MM, Lohr F, Schmitz A, König GM (2014) Function of the loading module in CorI and of the O-methyltransferase CorH in vinyl carbamate biosynthesis of the antibiotic corallopyronin A. Antimicrob Agents Chemother 58:950–956. doi: 10.1128/aac.01894-13 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Silakowski B, Nordsiek G, Kunze B, Blöcker H, Müller R (2001) Novel features in a combined polyketide synthase/non-ribosomall peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga 15. Chem Biol 8:59–69. doi: 10.1016/s1074-5521(00)00056-9 CrossRefPubMedGoogle Scholar
  31. Silakowski B, Schairer HU, Ehret H, Kunze B, Weinig S, Nordsiek G, Brandt P, Blöcker H, Höfle G, Beyer S, Müller R (1999) New lessons for combinatorial biosynthesis from myxobacteria: the myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J Biol Chem 274:37391–37399. doi: 10.1074/jbc.274.52.37391 CrossRefPubMedGoogle Scholar
  32. Spröer C, Reichenbach H, Stackebrandt E (1999) The correlation between morphogenetic classification of myxobacteria. Int J Syst Bacteriol 4:1255–1262. doi: 10.1099/00207713-49-3-1255 CrossRefGoogle Scholar
  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Weissman KJ, Muller R (2010) Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 27:1276–1295. doi: 10.1002/chin.201051263 CrossRefPubMedGoogle Scholar
  35. Wenzel SC, Muller R (2009) Myxobacteria-microbial factories for the production of bioactive secondary metabolites. Mol BioSyst 5:567–574. doi: 10.1039/b901287g
  36. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. doi: 10.1038/nprot.2007.521 CrossRefPubMedGoogle Scholar
  37. Zhang X, Yao Q, Cai Z, Xie X, Zhu H (2003) Isolation and identification of myxobacteria from saline-alkaline soils in Xinjiang, China. PLoS One 8:e70466. doi: 10.1371/journal.pone.0070466 CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017

Authors and Affiliations

  • Ivana Charousová
    • 1
  • Heinrich Steinmetz
    • 2
  • Juraj Medo
    • 1
  • Soňa Javoreková
    • 1
  • Joachim Wink
    • 2
  1. 1.Faculty of Biotechnology and Food Sciences, Department of MicrobiologySlovak University of Agriculture in NitraNitraSlovak Republic
  2. 2.Helmholtz Centre for Infection Research, Microbial Strain CollectionBraunschweigGermany

Personalised recommendations