Folia Microbiologica

, Volume 62, Issue 1, pp 73–87 | Cite as

Current views on HIV-1 latency, persistence, and cure

  • Zora Melkova
  • Prakash Shankaran
  • Michaela Madlenakova
  • Josef Bodor
Article

Abstract

HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called “shock and kill” strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.

References

  1. Archin NM et al (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:482–485. doi:10.1038/nature11286 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Archin NM et al (2014a) HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. The Journal of infectious diseases 210:728–735. doi:10.1093/infdis/jiu155 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM (2014b) Eradicating HIV-1 infection: seeking to clear a persistent pathogen nature reviews. Microbiology 12:750–764. doi:10.1038/nrmicro3352 PubMedPubMedCentralGoogle Scholar
  4. Avalos CR et al (2016) Quantitation of productively infected monocytes and macrophages of SIV-infected macaques. J Virol. doi:10.1128/JVI.00290-16 PubMedPubMedCentralGoogle Scholar
  5. Banga R, Procopio FA, Cavassini M, Perreau M (2016) In vitro reactivation of replication-competent and infectious HIV-1 by histone deacetylase inhibitors. J Virol 90:1858–1871. doi:10.1128/JVI.02359-15 PubMedCentralCrossRefGoogle Scholar
  6. Bednarik DP, Cook JA, Pitha PM (1990) Inactivation of the HIV LTR by DNA CpG methylation: evidence for a role in latency. EMBO J 9:1157–1164PubMedPubMedCentralGoogle Scholar
  7. Bennasser Y, Le SY, Yeung ML, Jeang KT (2004) HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 1:43. doi:10.1186/1742-4690-1-43 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bhatt D, Ghosh S (2014) Regulation of the NF-kappaB-mediated transcription of inflammatory genes. Front Immunol 5:71. doi:10.3389/fimmu.2014.00071 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Biancotto A et al (2004) Dual role of prostratin in inhibition of infection and reactivation of human immunodeficiency virus from latency in primary blood lymphocytes and lymphoid tissue. J Virol 78:10507–10515. doi:10.1128/JVI.78.19.10507-10515.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blazkova J et al (2009) CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5:e1000554. doi:10.1371/journal.ppat.1000554 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blazkova J et al (2012) Paucity of HIV DNA methylation in latently infected, resting CD4+ T cells from infected individuals receiving antiretroviral therapy. J Virol 86:5390–5392. doi:10.1128/JVI.00040-12 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blum KS, Pabst R (2007) Lymphocyte numbers and subsets in the human blood. Do they mirror the situation in all organs? Immunol Lett 108:45–51. doi:10.1016/j.imlet.2006.10.009 PubMedCrossRefGoogle Scholar
  13. Bodor J (2006) Regulation of HIV-1 and IL-2 transcription by inducible CAMP early repressor (ICER. Retrovirology 3(Suppl 1):S81PubMedCentralCrossRefGoogle Scholar
  14. Boehm D et al (2013) BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12:452–462. doi:10.4161/cc.23309 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bosque A, Planelles V (2009) Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113:58–65. doi:10.1182/blood-2008-07-168393 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bosque A, Famiglietti M, Weyrich AS, Goulston C, Planelles V (2011) Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog 7:e1002288. doi:10.1371/journal.ppat.1002288 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brooks DG, Kitchen SG, Kitchen CM, Scripture-Adams DD, Zack JA (2001) Generation of HIV latency during thymopoiesis. Nat Med 7:459–464. doi:10.1038/86531 PubMedCrossRefGoogle Scholar
  18. Bruner KM, Hosmane NN, Siliciano RF (2015) Towards an HIV-1 cure: measuring the latent reservoir. Trends Microbiol 23:192–203. doi:10.1016/j.tim.2015.01.013 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20:425–429. doi:10.1038/nm.3489 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Buzon MJ et al (2014) HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat Med 20:139–142. doi:10.1038/nm.3445 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carter CC, Onafuwa-Nuga A, McNamara LA, Riddell J, Bixby D, Savona MR, Collins KL (2010) HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med 16:446–451. doi:10.1038/nm.2109 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Caskey M et al (2015) Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522:487–491. doi:10.1038/nature14411 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chan JK, Bhattacharyya D, Lassen KG, Ruelas D, Greene WC (2013) Calcium/calcineurin synergizes with prostratin to promote NF-kappaB dependent activation of latent HIV. PLoS One 8:e77749. doi:10.1371/journal.pone.0077749 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chege D et al (2011) Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy. AIDS 25:741–749. doi:10.1097/QAD.0b013e328344cefb PubMedCrossRefGoogle Scholar
  25. Cheng AS et al (2011) EZH2-mediated concordant repression of Wnt antagonists promotes beta-catenin-dependent hepatocarcinogenesis. Cancer Res 71:4028–4039. doi:10.1158/0008-5472.CAN-10-3342 PubMedCrossRefGoogle Scholar
  26. Chirullo B et al (2013) A candidate anti-HIV reservoir compound, auranofin, exerts a selective ‘anti-memory’ effect by exploiting the baseline oxidative status of lymphocytes. Cell Death Dis 4:e944. doi:10.1038/cddis.2013.473 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chomont N et al (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15:893–900. doi:10.1038/nm.1972 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Choudhary SK, Archin NM, Cheema M, Dahl NP, Garcia JV, Margolis DM (2012) Latent HIV-1 infection of resting CD4(+) T cells in the humanized Rag2(−)/(−) gamma c(−)/(−) mouse. J Virol 86:114–120. doi:10.1128/JVI.05590-11 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chun TW, Fauci AS (1999) Latent reservoirs of HIV: obstacles to the eradication of virus. Proc Natl Acad Sci U S A 96:10958–10961PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chun TW, Engel D, Mizell SB, Ehler LA, Fauci AS (1998) Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med 188:83–91PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M Jr, Coffin JM, Mellors JW (2014) Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A 111:7078–7083. doi:10.1073/pnas.1402873111 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Clouse KA et al (1989) Monokine regulation of human immunodeficiency virus-1 expression in a chronically infected human T cell clone. J Immunol 142:431–438PubMedGoogle Scholar
  33. Clutton G, Archin N, Xu Y, Margolis DM, Goonetilleke N (2015) Differential effects of HIV latency-reversing agents on T cell phenotype and function: implications for HIV cure. Journal of Virus Eradication 1:8Google Scholar
  34. Contreras X, Barboric M, Lenasi T, Peterlin BM (2007) HMBA releases P-TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and activates HIV transcription. PLoS Pathog 3:1459–1469. doi:10.1371/journal.ppat.0030146 PubMedCrossRefGoogle Scholar
  35. Crooks AM et al (2015) Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. The Journal of Infectious Diseases 212:1361–1365. doi:10.1093/infdis/jiv218 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dar RD, Hosmane NN, Arkin MR, Siliciano RF, Weinberger LS (2014) Screening for noise in gene expression identifies drug synergies. Science 344:1392–1396. doi:10.1126/science.1250220 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Deeks SG (2012) HIV: shock and kill. Nature 487:439–440. doi:10.1038/487439a PubMedCrossRefGoogle Scholar
  38. Denton PW et al (2012) Generation of HIV latency in humanized BLT mice. J Virol 86:630–634. doi:10.1128/JVI.06120-11 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dienz O et al (2007) Accumulation of NFAT mediates IL-2 expression in memory, but not naive, CD4+ T cells. Proc Natl Acad Sci U S A 104:7175–7180. doi:10.1073/pnas.0610442104 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Doitsh G et al (2014) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505:509–514. doi:10.1038/nature12940 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Donahue DA, Wainberg MA (2013) Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 10:11. doi:10.1186/1742-4690-10-11 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Doyon G, Zerbato J, Mellors JW, Sluis-Cremer N (2013) Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog. AIDS 27:F7–F11. doi:10.1097/QAD.0b013e3283570620 PubMedCrossRefGoogle Scholar
  43. du Chene I et al (2007) Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 26:424–435. doi:10.1038/sj.emboj.7601517 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Farber D (2015) Tissue localization of human T cell responses. Journal of Virus Eradication 1:6Google Scholar
  45. Farber DL, Yudanin NA, Restifo NP (2014) Human memory T cells: generation, compartmentalization and homeostasis nature reviews. Immunology 14:24–35. doi:10.1038/nri3567 PubMedGoogle Scholar
  46. Finzi D et al (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278:1295–1300PubMedCrossRefGoogle Scholar
  47. Finzi D et al (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5:512–517. doi:10.1038/8394 PubMedCrossRefGoogle Scholar
  48. Fletcher CV et al (2014) Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A 111:2307–2312. doi:10.1073/pnas.1318249111 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS (1987) Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238:800–802PubMedCrossRefGoogle Scholar
  50. Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS (1989) Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci U S A 86:2365–2368PubMedPubMedCentralCrossRefGoogle Scholar
  51. Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM, Margolis DM, Karn J (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J Virol 85:9078–9089. doi:10.1128/JVI.00836-11 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fujinaga K, Barboric M, Li Q, Luo Z, Price DH, Peterlin BM (2012) PKC phosphorylates HEXIM1 and regulates P-TEFb activity. Nucleic Acids Res 40:9160–9170. doi:10.1093/nar/gks682 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fukazawa Y et al (2015) B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med 21:132–139. doi:10.1038/nm.3781 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gao D et al (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–906. doi:10.1126/science.1240933 PubMedCrossRefGoogle Scholar
  55. Garcia-Rodriguez C, Rao A (1998) Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP). J Exp Med 187:2031–2036PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gardner MB, Luciw PA (2008) Macaque models of human infectious disease. ILAR Journal/National Research Council, Institute of Laboratory Animal Resources 49:220–255CrossRefGoogle Scholar
  57. Giffin MJ, Stroud JC, Bates DL, von Koenig KD, Hardin J, Chen L (2003) Structure of NFAT1 bound as a dimer to the HIV-1 LTR kappa B element. Nat Struct Biol 10:800–806. doi:10.1038/nsb981 PubMedCrossRefGoogle Scholar
  58. Gludish DW, Mwandumba HC, Jambo KC, Amie SM, Russel DG (2015) The human lung is a site of productive HIV infection during long-term ART: novel tools to study ART-durable HIV reservoirs. Journal of Virus Eradication 1:7Google Scholar
  59. Gondois-Rey F et al (2006) R5 variants of human immunodeficiency virus type 1 preferentially infect CD62L- CD4+ T cells and are potentially resistant to nucleoside reverse transcriptase inhibitors. J Virol 80:854–865. doi:10.1128/JVI.80.2.854-865.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Han Y et al (2008) Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 4:134–146. doi:10.1016/j.chom.2008.06.008 PubMedPubMedCentralCrossRefGoogle Scholar
  61. He G, Margolis DM (2002) Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol 22:2965–2973PubMedPubMedCentralCrossRefGoogle Scholar
  62. Henrich TJ et al (2013) Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. The Journal of Infectious Diseases 207:1694–1702. doi:10.1093/infdis/jit086 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Herrmann CH, Rice AP (1995) Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J Virol 69:1612–1620PubMedPubMedCentralGoogle Scholar
  64. Hezareh M et al (2004) Mechanisms of HIV receptor and co-receptor down-regulation by prostratin: role of conventional and novel PKC isoforms. Antiviral Chemistry & Chemotherapy 15:207–222CrossRefGoogle Scholar
  65. Hilldorfer BB, Cillo AR, Besson GJ, Bedison MA, Mellors JW (2012) New tools for quantifying HIV-1 reservoirs: plasma RNA single copy assays and beyond. Current HIV/AIDS Reports 9:91–100. doi:10.1007/s11904-011-0104-6 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hirsch VM, Olmsted RA, Murphey-Corb M, Purcell RH, Johnson PR (1989) An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 339:389–392. doi:10.1038/339389a0 PubMedCrossRefGoogle Scholar
  67. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126. doi:10.1038/373123a0 PubMedCrossRefGoogle Scholar
  68. Ho YC et al (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155:540–551. doi:10.1016/j.cell.2013.09.020 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hofmann H et al (2012) The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J Virol 86:12552–12560. doi:10.1128/JVI.01657-12 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Honeycutt JB, Wahl A, Archin N, Choudhary S, Margolis D, Garcia JV (2013) HIV-1 infection, response to treatment and establishment of viral latency in a novel humanized T cell-only mouse (TOM) model. Retrovirology 10:121. doi:10.1186/1742-4690-10-121 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Honeycutt JB et al (2016) Macrophages sustain HIV replication in vivo independently of T cells. J Clin Invest 126:1353–1366. doi:10.1172/JCI84456 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Howell BJ et al (2015) Developing and applying ultrasensitive p24 protein immunoassay for HIV latency. Journal of Virus Eradication 1:5Google Scholar
  73. Huang J et al (2007) Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13:1241–1247. doi:10.1038/nm1639 PubMedCrossRefGoogle Scholar
  74. Huang Y et al (2016) Antiretroviral drug transporters and metabolic enzymes in human testicular tissue: potential contribution to HIV-1 sanctuary site. J Antimicrob Chemother. doi:10.1093/jac/dkw046 Google Scholar
  75. Huet T, Cheynier R, Meyerhans A, Roelants G, Wain-Hobson S (1990) Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345:356–359. doi:10.1038/345356a0 PubMedCrossRefGoogle Scholar
  76. Hutter G, Bodor J, Ledger S, Boyd M, Millington M, Tsie M, Symonds G (2015) CCR5 targeted cell therapy for HIV and prevention of viral escape. Viruses 7:4186–4203. doi:10.3390/v7082816 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285:16538–16545. doi:10.1074/jbc.M110.103531 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Iordanskiy S, Kashanchi F (2016) Potential of radiation-induced cellular stress for reactivation of latent HIV-1 and killing of infected cells. AIDS Res Hum Retrovir 32:120–124. doi:10.1089/AID.2016.0006 PubMedCrossRefGoogle Scholar
  79. Iordanskiy S et al (2015) Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells. Virology 485:1–15. doi:10.1016/j.virol.2015.06.021 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jiang Y, Tian B, Saifuddin M, Agy MB, Emau P, Cairns JS, Tsai CC (2009) RT-SHIV, an infectious CCR5-tropic chimeric virus suitable for evaluating HIV reverse transcriptase inhibitors in macaque models. AIDS Res Ther 6:23. doi:10.1186/1742-6405-6-23 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jiang G et al (2014) Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase Cdelta-NF-kappaB signaling. AIDS 28:1555–1566. doi:10.1097/QAD.0000000000000289 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jiang G et al (2015) Synergistic reactivation of latent HIV expression by Ingenol-3-Angelate, PEP005, targeted NF-kB signaling in combination with JQ1 induced p-TEFb activation. PLoS Pathog 11:e1005066. doi:10.1371/journal.ppat.1005066 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Jimenez JL, Gonzalez-Nicolas J, Alvarez S, Fresno M, Munoz-Fernandez MA (2001) Regulation of human immunodeficiency virus type 1 replication in human T lymphocytes by nitric oxide. J Virol 75:4655–4663. doi:10.1128/JVI.75.10.4655-4663.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22:1868–1877. doi:10.1093/emboj/cdg188 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kao SY, Calman AF, Luciw PA, Peterlin BM (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330:489–493. doi:10.1038/330489a0 PubMedCrossRefGoogle Scholar
  86. Karn J (2013) A new BET on the control of HIV latency. Cell Cycle 12:545–546. doi:10.4161/cc.23679 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Karpel ME, Boutwell CL, Allen TM (2015) BLT humanized mice as a small animal model of HIV infection. Current Opinion in Virology 13:75–80. doi:10.1016/j.coviro.2015.05.002 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5:e1000495. doi:10.1371/journal.ppat.1000495 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Keedy KS, Archin NM, Gates AT, Espeseth A, Hazuda DJ, Margolis DM (2009) A limited group of class I histone deacetylases acts to repress human immunodeficiency virus type 1 expression. J Virol 83:4749–4756. doi:10.1128/JVI.02585-08 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kim M, Siliciano RF (2016) Reservoir expansion by T-cell proliferation may be another barrier to curing HIV infection. Proc Natl Acad Sci U S A 113:1692–1694. doi:10.1073/pnas.1600097113 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kim YK, Mbonye U, Hokello J, Karn J (2011) T-cell receptor signaling enhances transcriptional elongation from latent HIV proviruses by activating P-TEFb through an ERK-dependent pathway. J Mol Biol 410:896–916. doi:10.1016/j.jmb.2011.03.054 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kiselinova M, Pasternak AO, De Spiegelaere W, Vogelaers D, Berkhout B, Vandekerckhove L (2014) Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS One 9:e85999. doi:10.1371/journal.pone.0085999 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Klase Z et al (2007) HIV-1 TAR element is processed by dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 8:63. doi:10.1186/1471-2199-8-63 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kula A, Gharu L, Marcello A (2013) HIV-1 pre-mRNA commitment to rev mediated export through PSF and Matrin 3. Virology 435:329–340. doi:10.1016/j.virol.2012.10.032 PubMedCrossRefGoogle Scholar
  95. Kulkosky J, Culnan DM, Roman J, Dornadula G, Schnell M, Boyd MR, Pomerantz RJ (2001) Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98:3006–3015PubMedCrossRefGoogle Scholar
  96. Kumar A, Darcis G, Van Lint C, Herbein G (2015) Epigenetic control of HIV-1 post integration latency: implications for therapy. Clinical Rpigenetics 7:103. doi:10.1186/s13148-015-0137-6 CrossRefGoogle Scholar
  97. Lassen KG, Bailey JR, Siliciano RF (2004) Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J Virol 78:9105–9114. doi:10.1128/JVI.78.17.9105-9114.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lassen KG, Ramyar KX, Bailey JR, Zhou Y, Siliciano RF (2006) Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog 2:e68. doi:10.1371/journal.ppat.0020068 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lassen KG, Hebbeler AM, Bhattacharyya D, Lobritz MA, Greene WC (2012) A flexible model of HIV-1 latency permitting evaluation of many primary CD4 T-cell reservoirs. PLoS One 7:e30176. doi:10.1371/journal.pone.0030176 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lavender KJ et al (2013) BLT-humanized C57BL/6 Rag2−/−gammac−/−CD47−/− mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. Blood 122:4013–4020. doi:10.1182/blood-2013-06-506949 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lenasi T, Peterlin BM, Barboric M (2011) Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb. J Biol Chem 286:22758–22768. doi:10.1074/jbc.M111.235077 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Levere RD, Gong YF, Kappas A, Bucher DJ, Wormser GP, Abraham NG (1991) Heme inhibits human immunodeficiency virus 1 replication in cell cultures and enhances the antiviral effect of zidovudine. Proc Natl Acad Sci U S A 88:1756–1759PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lewinski MK et al (2005) Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79:6610–6619. doi:10.1128/JVI.79.11.6610-6619.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lewinski MK et al (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2:e60. doi:10.1371/journal.ppat.0020060 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lewis MG et al (2011) Gold drug auranofin restricts the viral reservoir in the monkey AIDS model and induces containment of viral load following ART suspension. AIDS 25:1347–1356. doi:10.1097/QAD.0b013e328347bd77 PubMedCrossRefGoogle Scholar
  106. Lorenzo-Redondo R et al (2016) Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530:51–56. doi:10.1038/nature16933 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lusic M, Marini B, Ali H, Lucic B, Luzzati R, Giacca M (2013) Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13:665–677. doi:10.1016/j.chom.2013.05.006 PubMedCrossRefGoogle Scholar
  108. Maldarelli F et al (2007) ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog 3:e46. doi:10.1371/journal.ppat.0030046 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Malhotra D, Fletcher AL, Turley SJ (2013) Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev 251:160–176. doi:10.1111/imr.12023 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Marban C et al (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26:412–423. doi:10.1038/sj.emboj.7601516 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Margolis DM, Salzwedel K, Chomont N, Psomas C, Routy JP, Poli G, Lafeuillade A (2016) Highlights from the seventh international workshop on HIV persistence during therapy, 8–11 December 2015, Miami, Florida, USA. Journal of Virus Eradication 2:57–65PubMedPubMedCentralGoogle Scholar
  112. Maricato JT et al (2015) Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences. PLoS One 10:e0119234. doi:10.1371/journal.pone.0119234 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Marsden MD et al (2012) HIV latency in the humanized BLT mouse. J Virol 86:339–347. doi:10.1128/JVI.06366-11 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Marsden MD et al (2015) Evaluation of HIV latency reversal using designed PKC modulators in humanized BLT mice. Journal of Virus Eradication 1:1Google Scholar
  115. Massanella M, Richman DD (2016) Measuring the latent reservoir in vivo. J Clin Invest 126:464–472. doi:10.1172/JCI80567 PubMedCrossRefGoogle Scholar
  116. Massanella M, Fromentin R, Chomont N (2016) Residual inflammation and viral reservoirs: alliance against an HIV cure current opinion in HIV and. AIDS 11:234–241. doi:10.1097/COH.0000000000000230 Google Scholar
  117. Matsuda Y, Kobayashi-Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M (2015) Epigenetic heterogeneity in HIV-1 latency establishment. Scientific Reports 5:7701. doi:10.1038/srep07701 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Mbonye U, Karn J (2014) Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology 454–455:328–339. doi:10.1016/j.virol.2014.02.008 PubMedCrossRefGoogle Scholar
  119. McKinstry KK, Strutt TM, Swain SL (2010) The potential of CD4 T-cell memory. Immunology 130:1–9. doi:10.1111/j.1365-2567.2010.03259.x PubMedPubMedCentralCrossRefGoogle Scholar
  120. Mehla R et al (2010) Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One 5:e11160. doi:10.1371/journal.pone.0011160 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Melkova Z, Bruckova M, Pitha PM (2000) The effect of nitric oxide on HIV-1 replication. Poster. First International Conference on Biology, Chemistry, and Therapeutic Applications of Nitric Oxide, San Francisco, USAGoogle Scholar
  122. Melkova Z, Shankaran P, Hajkova V, Jilich D (2015a) Reactivation of latent HIV-1 by iron-mediated redox stressh. Cytokine 76:92. doi:10.1016/j.cyto.2015.08.166 CrossRefGoogle Scholar
  123. Melkova Z, Shankaran P, Hajkova V, Jilich D, Fujikura Y (2015b) Effects of heme degradation products on reactivation of latent HIV-1. Journal of Virus Eradication 1 (Suppl. 1):42Google Scholar
  124. Mendez-Lagares G, Jaramillo-Ruiz D, Pion M, Leal M, Munoz-Fernandez MA, Pacheco YM, Correa-Rocha R (2014) HIV infection deregulates the balance between regulatory T cells and IL-2-producing CD4 T cells by decreasing the expression of the IL-2 receptor in Treg. J Acquir Immune Defic Syndr 65:278–282. doi:10.1097/QAI.0000000000000092 PubMedCrossRefGoogle Scholar
  125. Metcalf Pate KA et al (2015) A murine viral outgrowth assay to detect residual HIV type 1 in patients with undetectable viral loads. The Journal of Infectious Diseases 212:1387–1396. doi:10.1093/infdis/jiv230 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Miles B et al (2015) Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun 6:8608. doi:10.1038/ncomms9608 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Modjarrad K, Vermund SH (2010) Effect of treating co-infections on HIV-1 viral load: a systematic review. Lancet Infect Dis 10:455–463. doi:10.1016/S1473-3099(10)70093-1 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, Greene WC (2014) IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343:428–432. doi:10.1126/science.1243640 PubMedCrossRefGoogle Scholar
  129. Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20:3898–3941. doi:10.3390/molecules20033898 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST (2015) The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio 6:e00465. doi:10.1128/mBio.00465-15 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Murray JM et al (2014) HIV DNA subspecies persist in both activated and resting memory CD4+ T cells during antiretroviral therapy. J Virol 88:3516–3526. doi:10.1128/JVI.03331-13 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Ndung’u T et al (2001) Infectious simian/human immunodeficiency virus with human immunodeficiency virus type 1 subtype C from an African isolate: rhesus macaque model. J Virol 75:11417–11425. doi:10.1128/JVI.75.23.11417-11425.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Omoto S et al (2004) HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1:44. doi:10.1186/1742-4690-1-44 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ott M, Verdin E (2013) Three rules for HIV latency: location, location, and location. Cell Host Microbe 13:625–626. doi:10.1016/j.chom.2013.05.016 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Pace GW, Leaf CD (1995) The role of oxidative stress in HIV disease. Free Radic Biol Med 19:523–528PubMedCrossRefGoogle Scholar
  136. Palmer S et al (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41:4531–4536PubMedPubMedCentralCrossRefGoogle Scholar
  137. Palmer S et al (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A 105:3879–3884. doi:10.1073/pnas.0800050105 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Pasternak AO, Adema KW, Bakker M, Jurriaans S, Berkhout B, Cornelissen M, Lukashov VV (2008) Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. J Clin Microbiol 46:2206–2211. doi:10.1128/JCM.00055-08 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Pasternak AO, Lukashov VV, Berkhout B (2013) Cell-associated HIV RNA: a dynamic biomarker of viral persistence. Retrovirology 10:41. doi:10.1186/1742-4690-10-41 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586PubMedCrossRefGoogle Scholar
  141. Perelson AS et al (1997) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–191. doi:10.1038/387188a0 PubMedCrossRefGoogle Scholar
  142. Perkins ND, Edwards NL, Duckett CS, Agranoff AB, Schmid RM, Nabel GJ (1993) A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J 12:3551–3558PubMedPubMedCentralGoogle Scholar
  143. Ploquin MJ, Silvestri G, Muller-Trutwin M (2016) Immune activation in HIV infection: what can the natural hosts of simian immunodeficiency virus teach us? Current opinion in HIV and. AIDS 11:201–208. doi:10.1097/COH.0000000000000238 Google Scholar
  144. Policicchio BB, Pandrea I, Apetrei C (2016) Animal models for HIV cure research. Front Immunol 7:12. doi:10.3389/fimmu.2016.00012 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Price DH (2000) P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20:2629–2634PubMedPubMedCentralCrossRefGoogle Scholar
  146. Procopio FA et al (2015) A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine 2:872–881. doi:10.1016/j.ebiom.2015.06.019 CrossRefGoogle Scholar
  147. Pyo CW, Yang YL, Yoo NK, Choi SY (2008) Reactive oxygen species activate HIV long terminal repeat via post-translational control of NF-kappaB. Biochem Biophys Res Commun 376:180–185. doi:10.1016/j.bbrc.2008.08.114 PubMedCrossRefGoogle Scholar
  148. Rasmussen TA et al (2013) Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation. Human Vaccines & Immunotherapeutics 9:993–1001. doi:10.4161/hv.23800 CrossRefGoogle Scholar
  149. Rasmussen TA et al (2014) Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. The Lancet HIV 1:e13–e21. doi:10.1016/S2352-3018(14)70014-1 PubMedCrossRefGoogle Scholar
  150. Romerio F, Zapata JC (2015) Detection and enrichment to near purity of rare HIV-1 infected cells by PrimeFlow RNA. Journal of Virus Eradication 1:5Google Scholar
  151. Saison J et al (2014) Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients. Clin Exp Immunol 176:401–409. doi:10.1111/cei.12278 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR (2007) CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 110:4161–4164. doi:10.1182/blood-2007-06-097907 PubMedCrossRefGoogle Scholar
  153. Sanchez G, Xu X, Chermann JC, Hirsch I (1997) Accumulation of defective viral genomes in peripheral blood mononuclear cells of human immunodeficiency virus type 1-infected individuals. J Virol 71:2233–2240PubMedPubMedCentralGoogle Scholar
  154. Schopman NC et al (2012) Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res 40:414–427. doi:10.1093/nar/gkr719 PubMedCrossRefGoogle Scholar
  155. Schuetz A et al (2014) Initiation of ART during early acute HIV infection preserves mucosal Th17 function and reverses HIV-related immune activation. PLoS Pathog 10:e1004543. doi:10.1371/journal.ppat.1004543 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Serrao E, Engelman AN (2016) Sites of retroviral DNA integration: from basic research to clinical applications. Crit Rev Biochem Mol Biol 51:26–42. doi:10.3109/10409238.2015.1102859 PubMedCrossRefGoogle Scholar
  157. Shan L, Siliciano RF (2013) From reactivation of latent HIV-1 to elimination of the latent reservoir: the presence of multiple barriers to viral eradication. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology 35:544–552. doi:10.1002/bies.201200170 CrossRefGoogle Scholar
  158. Shan L et al (2011) Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol 85:5384–5393. doi:10.1128/JVI.02536-10 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Shan L, Rabi SA, Laird GM, Eisele EE, Zhang H, Margolick JB, Siliciano RF (2013) A novel PCR assay for quantification of HIV-1 RNA. J Virol 87:6521–6525. doi:10.1128/JVI.00006-13 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Shankaran P, Vlkova L, Liskova J, Melkova Z (2011) Heme arginate potentiates latent HIV-1 reactivation while inhibiting the acute infection. Antivir Res 92:434–446. doi:10.1016/j.antiviral.2011.09.011 PubMedCrossRefGoogle Scholar
  161. Sharp PM, Hahn BH (2011) Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspectives in Medicine 1:a006841. doi:10.1101/cshperspect.a006841 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Siliciano JD, Siliciano RF (2005) Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods Mol Biol 304:3–15. doi:10.1385/1-59259-907-9:003 PubMedGoogle Scholar
  163. Siliciano JD et al (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9:727–728. doi:10.1038/nm880 PubMedCrossRefGoogle Scholar
  164. Sloan DD et al (2015) Targeting HIV reservoir in infected CD4 T cells by dual-affinity re-targeting molecules (DARTs) that bind HIV envelope and recruit cytotoxic T cells. PLoS Pathog 11:e1005233. doi:10.1371/journal.ppat.1005233 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Sogaard OS et al (2015) The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog 11:e1005142. doi:10.1371/journal.ppat.1005142 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Soriano-Sarabia N et al (2015) Peripheral Vgamma9Vdelta2 T cells are a novel reservoir of latent HIV infection. PLoS Pathog 11:e1005201. doi:10.1371/journal.ppat.1005201 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Spina CA et al (2013) An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 9:e1003834. doi:10.1371/journal.ppat.1003834 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Spivak AM et al (2014) A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clinical Infectious Diseases : an Official Publication of the Infectious Diseases Society of America 58:883–890. doi:10.1093/cid/cit813 CrossRefGoogle Scholar
  169. Sung TL, Rice AP (2009) miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog 5:e1000263. doi:10.1371/journal.ppat.1000263 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Tae S, Karkhanis V, Velasco K, Yaneva M, Erdjument-Bromage H, Tempst P, Sif S (2011) Bromodomain protein 7 interacts with PRMT5 and PRC2, and is involved in transcriptional repression of their target genes. Nucleic Acids Res 39:5424–5438. doi:10.1093/nar/gkr170 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Thompson MR et al (2014) Interferon gamma-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses. J Biol Chem 289:23568–23581. doi:10.1074/jbc.M114.554147 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107. doi:10.1126/science.1093933 PubMedCrossRefGoogle Scholar
  173. Tran TA et al (2008) Resting regulatory CD4 T cells: a site of HIV persistence in patients on long-term effective antiretroviral therapy. PLoS One 3:e3305. doi:10.1371/journal.pone.0003305 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Trejbalova K et al (2016) Development of 5′ LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clinical Epigenetics 8. doi:10.1186/s13148-016-0185-6
  175. Triboulet R et al (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579–1582. doi:10.1126/science.1136319 PubMedCrossRefGoogle Scholar
  176. Tyagi M, Karn J (2007) CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 26:4985–4995. doi:10.1038/sj.emboj.7601928 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tyagi M, Pearson RJ, Karn J (2010) Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 84:6425–6437. doi:10.1128/JVI.01519-09 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Van Lint C, Bouchat S, Marcello A (2013) HIV-1 transcription and latency: an update. Retrovirology 10:67. doi:10.1186/1742-4690-10-67 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Verdin E, Paras P Jr, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12:3249–3259PubMedPubMedCentralGoogle Scholar
  180. Vire E et al (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874. doi:10.1038/nature04431 PubMedCrossRefGoogle Scholar
  181. Wang L, de Zoeten EF, Greene MI, Hancock WW (2009) Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov 8:969–981. doi:10.1038/nrd3031 PubMedPubMedCentralGoogle Scholar
  182. Wang X, Cho B, Suzuki K, Xu Y, Green JA, An J, Cyster JG (2011) Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med 208:2497–2510. doi:10.1084/jem.20111449 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wei X et al (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122. doi:10.1038/373117a0 PubMedCrossRefGoogle Scholar
  184. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462PubMedCrossRefGoogle Scholar
  185. Weinberger LS (2015) A minimal fate-selection switch. Curr Opin Cell Biol 37:111–118. doi:10.1016/j.ceb.2015.10.005 PubMedCrossRefGoogle Scholar
  186. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–182. doi:10.1016/j.cell.2005.06.006 PubMedCrossRefGoogle Scholar
  187. Weinberger LS, Dar RD, Simpson ML (2008) Transient-mediated fate determination in a transcriptional circuit of HIV. Nat Genet 40:466–470. doi:10.1038/ng.116 PubMedCrossRefGoogle Scholar
  188. Wightman F et al (2010) Both CD31(+) and CD31(−) naive CD4(+) T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. The Journal of Infectious Diseases 202:1738–1748. doi:10.1086/656721 PubMedCrossRefGoogle Scholar
  189. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25:139–149. doi:10.1038/sj.emboj.7600900 PubMedCrossRefGoogle Scholar
  190. Wires ES, Alvarez D, Dobrowolski C, Wang Y, Morales M, Karn J, Harvey BK (2012) Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells. Journal of Neurovirology 18:400–410. doi:10.1007/s13365-012-0103-4 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Xing S et al (2011) Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J Virol 85:6060–6064. doi:10.1128/JVI.02033-10 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H (2006) P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell 21:227–237. doi:10.1016/j.molcel.2005.11.024 PubMedCrossRefGoogle Scholar
  193. Yang HC, Shen L, Siliciano RF, Pomerantz JL (2009a) Isolation of a cellular factor that can reactivate latent HIV-1 without T cell activation. Proc Natl Acad Sci U S A 106:6321–6326. doi:10.1073/pnas.0809536106 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Yang HC et al (2009b) Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest 119:3473–3486. doi:10.1172/JCI39199 PubMedPubMedCentralGoogle Scholar
  195. Yoh SM et al (2015) PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 161:1293–1305. doi:10.1016/j.cell.2015.04.050 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Zhang J, Scadden DT, Crumpacker CS (2007) Primitive hematopoietic cells resist HIV-1 infection via p21. J Clin Invest 117:473–481. doi:10.1172/JCI28971 PubMedPubMedCentralCrossRefGoogle Scholar
  197. Zolotukhin AS et al (2003) PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol 23:6618–6630PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2016

Authors and Affiliations

  • Zora Melkova
    • 1
    • 2
  • Prakash Shankaran
    • 1
  • Michaela Madlenakova
    • 1
    • 2
  • Josef Bodor
    • 2
  1. 1.Department of Immunology and Microbiology, 1st Faculty of MedicineCharles UniversityPrague 2Czech Republic
  2. 2.BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in VestecVestecCzech Republic

Personalised recommendations