Skip to main content
Log in

Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary)

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Dissimilatory iron-reducing bacteria are commonly found in microbial communities of aromatic hydrocarbon-contaminated subsurface environments where they often play key role in the degradation of the contaminants. The Siklós benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated area is one of the best characterized petroleum hydrocarbon-contaminated sites of Hungary. Continuous monitoring of the microbial community in the center of the contaminant plume indicated the presence of an emerging Geobacter population and a Rhodoferax phylotype highly associated with aromatic hydrocarbon-contaminated subsurface environments. The aim of the present study was to make an initial effort to enrich Rhodoferax-related and other dissimilatory iron-reducing bacteria from this environment. Accordingly, four slightly different freshwater media were used to enrich Fe(III) reducers, differing only in the form of nitrogen source (organic, inorganic nitrogen or gaseous headspace nitrogen). Although enrichment of the desired Rhodoferax phylotype was not succeeded, Geobacter-related bacteria were readily enriched. Moreover, the different nitrogen sources caused the enrichment of different Geobacter species. Investigation of the diversity of benzylsuccinate synthase gene both in the enrichments and in the initial groundwater sample indicated that the Geobacter population in the center of the contaminant plume may not play a significant role in the anaerobic degradation of toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aburto A, Peimbert M (2011) Degradation of a benzene-toluene mixture by hydrocarbon-adapted bacterial communities. Ann Microbiol 61:553–562

    Article  CAS  PubMed  Google Scholar 

  • Aklujkar M, Young ND, Holmes D, Chavan M, Risso C, Kiss HE, Han CS, Land ML, Lovley DR (2010) The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. BMC Genomics 11:490

    Article  PubMed  PubMed Central  Google Scholar 

  • Alfreider A, Vogt C (2007) Bacterial diversity and aerobic biodegradation potential in a BTEX-contaminated aquifer. Water Air Soil Pollut 183:415–426

    Article  CAS  Google Scholar 

  • Bardiya N, Bae JH (2004) Role of Citrobacter amalonaticus and Citrobacter farmeri in dissimilatory perchlorate reduction. J Basic Microbiol 44:88–97

    Article  CAS  PubMed  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Fahy A, McGenity TJ, Timmis KN, Ball AS (2006) Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 58:260–270

    Article  CAS  PubMed  Google Scholar 

  • Finneran KT, Johnsen CV, Lovley DR (2003) Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673

    Article  CAS  PubMed  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academic Press, London

    Book  Google Scholar 

  • Kaden R, Spröer C, Beyer D, Krolla-Sidenstein P (2014) Rhodoferax saidenbachensis sp. nov., a psychrotolerant, very slowly growing bacterium within the family Comamonadaceae, proposal of appropriate taxonomic position of Albidiferax ferrireducens strain T118T in the genus Rhodoferax and emended description of the genus Rhodoferax. Int J Syst Evol Microbiol 64:1186–1193

    Article  CAS  PubMed  Google Scholar 

  • Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 60:686–695

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Lee DJ, Wang A, Ren N, Su A, Lai JY (2016) Isolation of Fe(III)-reducing bacterium, Citrobacter sp., LAR-1, for startup of microbial fuel cell. Int J Hydr Energy 41:4498–4503

    Article  CAS  Google Scholar 

  • Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277

    Article  CAS  PubMed  Google Scholar 

  • Meyer F, Paarman D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The Metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouser PJ, N’Guessan AL, Elifantz H, Holmes DE, Williams KH, Wilkins MJ, Long PE, Lovley DR (2009) Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater. Environ Sci Tech 43:4386–4392

    Article  CAS  Google Scholar 

  • Révész S, Sipos R, Kende A, Rikker T, Romsics C, Mészáros É, Mohr A, Táncsics A, Márialigeti K (2006) Bacterial community changes in TCE biodegradation detected in microcosm experiments. Int Biodeter Biodegr 58:239–247

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelobolina ES, Vrionis HA, Findlay RH, Lovley DR (2008) Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. Int J Syst Evol Microbiol 58:1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380

    Article  CAS  PubMed  Google Scholar 

  • Székely AJ, Sipos R, Berta B, Vajna B, Hajdú C, Márialiget K (2009) DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Microb Ecol 57:522–533

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Táncsics A, Szoboszlay S, Szabó I, Farkas M, Kovács B, Kukolya J, Mayer Z, Kriszt B (2012) Quantification of subfamily I.2.C catechol 2,3-dioxygenase mRNA transcripts in groundwater samples of an oxygen-limited BTEX-contaminated site. Environ Sci Technol 46:232–240

    Article  PubMed  Google Scholar 

  • Táncsics A, Farkas M, Szoboszlay S, Szabó I, Kukolya J, Vajna B, Kovács B, Benedek T, Kriszt B (2013) One-year monitoring of meta-cleavage dioxygenase gene expression and microbial community dynamics reveals the relevance of subfamily I.2.C extradiol dioxygenases in hypoxic, BTEX-contaminated groundwater. Syst Appl Microbiol 36:339–350

    Article  PubMed  Google Scholar 

  • Thabet OB, Fardeau ML, Joulian C, Thomas P, Hamdi M, Garcia JL, Ollivier B (2004) Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10:185–190

    Article  CAS  PubMed  Google Scholar 

  • von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552

    Article  Google Scholar 

  • Winderl C, Schaefer S, Lueders T (2007) Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 9:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Chen S, Zhou S, Liu Y (2015) Genome sequence of a dissimilatory Fe(III)-reducing bacterium Geobacter soli type strain GSS01T. Stand Genomic Sci 10:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Hungarian Scientific Research Fund—OTKA (OTKA PD 104307) and Research Centre of Excellence–9878-5/2015/FEKUT and TéT_12_DE-1-2013-0007. András Táncsics was supported by the János Bolyai Research Grant of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Szoboszlay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkas, M., Szoboszlay, S., Benedek, T. et al. Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary). Folia Microbiol 62, 63–71 (2017). https://doi.org/10.1007/s12223-016-0473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-016-0473-8

Keywords

Navigation