Folia Microbiologica

, Volume 61, Issue 4, pp 329–335 | Cite as

Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles

  • Karolína Pádrová
  • Alena Čejková
  • Tomáš Cajthaml
  • Irena Kolouchová
  • Milada Vítová
  • Karel Sigler
  • Tomáš Řezanka
Article

Abstract

Oxidative stress induced by zero-valent iron nanoparticles (nZVIs) was used to improve lipid accumulation in various oleaginous and non-oleginous yeasts—Candida sp., Kluyveromyces polysporus, Rhodotorula glutinis, Saccharomyces cerevisiae, Torulospora delbrueckii, Trichosporon cutaneum, and Yarrowia lipolytica. The highest lipid yields occurred at 9–13 mg/L nZVIs. Gas chromatography-mass spectrometry was used for the quantitative and qualitative analysis of the fatty acids. It showed an increasing abundance of polyunsaturated fatty acids, especially essential linoleic acid, in the presence of nZVIs. Our results suggest that nZVIs can be used to improve not only lipid production by oleaginous microorganisms but also the nutritional value of biosynthesized unsaturated fatty acids.

Supplementary material

12223_2015_442_MOESM1_ESM.doc (100 kb)
ESM 1. (DOC 100 kb)

References

  1. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227CrossRefPubMedGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefPubMedGoogle Scholar
  3. Chen XF, Huang C, Yang XY, Xiong L, Chen XD, Ma LL (2013) Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresource Technol 143:18–24CrossRefGoogle Scholar
  4. Chipperfield JR, Ratledge C (2000) Salicylic acid is not a bacterial siderophore: a theoretical study. Biometals 13:165–168CrossRefPubMedGoogle Scholar
  5. Cipak A, Jaganjac M, Tehlivets O, Kohlwein SD, Zarkovic N (2008) Adaptation to oxidative stress induced by polyunsaturated fatty acids in yeast. BBA Mol Cell Biol Lipids 1781:283–287CrossRefGoogle Scholar
  6. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328CrossRefPubMedGoogle Scholar
  7. Dembitsky VM, Řezanka T (2005) Metabolites produced by nitrogen-fixing Nostoc species. Folia Microbiol 50:363–391Google Scholar
  8. Dembitsky VM, Řezanka T, Rozentsvet OA (1993) Lipid composition of three macrophytes from the Caspian Sea. Phytochemistry 33:1015–1019CrossRefGoogle Scholar
  9. Fajardo C, Sacca ML, Martinez-Gomariz M, Costa G, Nande M, Martin M (2013) Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere 93:1077–1083CrossRefPubMedGoogle Scholar
  10. Gaensly F, Picheth G, Brand D, Bonfim TMB (2014) The uptake of different iron salts by the yeast Saccharomyces cerevisiae. Braz J Microbiol 45:491–494CrossRefPubMedPubMedCentralGoogle Scholar
  11. Granger LM, Perlot P, Goma G, Pareilleux A (1993) Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 38:784–789CrossRefGoogle Scholar
  12. Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G (1996) Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochemistry 31:355–361CrossRefGoogle Scholar
  13. Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527CrossRefPubMedGoogle Scholar
  14. Jernejc K, Legisa M (2002) The influence of metal ions on malic enzyme activity and lipid synthesis in Aspergillus niger. FEMS Microbiol Lett 217:185–190CrossRefPubMedGoogle Scholar
  15. Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17CrossRefPubMedGoogle Scholar
  16. Kang NK, Lee B, Choi G-G, Moon M, Park MS, Lim J, Yang J-W (2014) Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J Chem Eng 31:861–867CrossRefGoogle Scholar
  17. Kasting JF (1993) Earths early atmosphere. Science 259:920–926CrossRefPubMedGoogle Scholar
  18. Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43:4555–4560CrossRefPubMedGoogle Scholar
  19. Khatchadourian A, Maysinger D (2009) Lipid droplets: their role in nanoparticle-induced oxidative stress. Mol Pharm 6:1125–1137CrossRefPubMedGoogle Scholar
  20. Meng X, Yang JM, Xu X, Zhang L, Nie QJ, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34:1–5CrossRefGoogle Scholar
  21. Pádrová K, Lukavský J, Nedbalová L, Čejková A, Cajthaml T, Sigler K, Vítová M, Řezanka T (2015) Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol 27:1443–1451CrossRefGoogle Scholar
  22. Philpott CC (2006) Iron uptake in fungi: a system for every source. BBA Mol Cell Res 1763:636–645Google Scholar
  23. Řezanka T (1993) Polyunsaturated and unusual fatty acids from slime-molds. Phytochemistry 33:1441–1444CrossRefGoogle Scholar
  24. Řezanka T, Matoulková D, Kolouchová I, Masák J, Sigler K (2013) Brewer’s yeast as a new source of palmitoleic acid—analysis of triacylglycerols by LC-MS. J Am Oil Chem Soc 90:1327–1342CrossRefGoogle Scholar
  25. Richard D, Kefi K, Barbe U, Bausero P, Visioli F (2008) Polyunsaturated fatty acids as antioxidants. Pharmacol Res 57:451–455CrossRefPubMedGoogle Scholar
  26. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefPubMedGoogle Scholar
  27. Santamauro F, Whiffin FM, Scott RJ, Chuck CJ (2014) Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol Biofuels 7:34–43CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ševců A, El-Temsah YS, Joner EJ, Černík M (2011) Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ 26:271–281CrossRefPubMedGoogle Scholar
  29. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Phys 49:611–641CrossRefGoogle Scholar
  30. Šmilauer P, Lepš J (2003) Multivariate analysis of ecological data using CANOCO 5. Cambridge university press, CambridgeGoogle Scholar
  31. Vančura A, Řezanka T, Maršálek J, Vančurová I, Křišťan V, Basařová G (1987) Effect of ammonium ions on the composition of fatty acids in Streptomyces fradiae, producer of tylosin. FEMS Microbiol Lett 48:357–360CrossRefGoogle Scholar
  32. Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem 40:13–20CrossRefGoogle Scholar
  33. Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. Plos One 9(e91957):1–13Google Scholar
  34. Zarnowski R, Dobrzyn A, Ntambi JM, Woods JP (2008) Ferrous, but not ferric, iron maintains homeostasis in Histoplasma capsulatum triacylglycerides. Curr Microbiol 57:153–157CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  36. Zhao X, Kong XL, Hua YY, Feng B, Zhao ZB (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Tech 110:405–412CrossRefGoogle Scholar
  37. Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technol 99:7881–7885CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2015

Authors and Affiliations

  • Karolína Pádrová
    • 1
  • Alena Čejková
    • 1
  • Tomáš Cajthaml
    • 2
  • Irena Kolouchová
    • 1
  • Milada Vítová
    • 3
  • Karel Sigler
    • 2
  • Tomáš Řezanka
    • 2
  1. 1.Department of BiotechnologyUniversity of Chemical Technology PraguePragueCzech Republic
  2. 2.Institute of Microbiology, CASPragueCzech Republic
  3. 3.Laboratory of Cell Cycles of Algae, Centre AlgatechInstitute of Microbiology, CASTřeboňCzech Republic

Personalised recommendations