Skip to main content

Advertisement

Log in

Transformation and characterization of an arsenic gene operon from urease-positive thermophilic Campylobacter (UPTC) in Escherichia coli

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

An arsenate susceptibility test was performed with transformed and cultured Escherichia coli DH5α cells, which carried recombinant DNA of full-length arsenic (ars) operon, namely a putative membrane permease, ArsP; a transcriptional repressor, ArsR; an arsenate reductase, ArsC; and an arsenical-resistance membrane transporter, Acr3, from the Japanese urease-positive thermophilic Campylobacter lari (UPTC) CF89-12. The E. coli DH5α transformant showed reduced susceptibility to arsenate (~1536 μg/mL), compared to the control. Thus, these ars four-genes from the UPTC CF89-12 strain cells could confer a reduced susceptibility to arsenate in the transformed and E. coli DH5α cells. E. coli transformants with truncated ars operons, acr3 (acr3) and arsC-acr3 (∆arsC-acr3), of the ars operon, showed an MIC value of 384 μg/mL (~384 μg/mL), similar to the E. coli cells which carried the pGEM-T vector (control). Reverse transcription PCR confirmed in vivo transcription of recombinant full-length ars operon and deletion variants (∆acr3 and ∆arsC-acr3) in the transformed E. coli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Butcher BG, Rawlings DE (2002) The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148:3983–3992

    Article  PubMed  CAS  Google Scholar 

  • Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai J, Salmon K, DuBow MS (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144:2705–2713

    Article  PubMed  CAS  Google Scholar 

  • Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367

    Article  PubMed  CAS  Google Scholar 

  • Debruyne L, On SLW, De Brandt E, Vandamme P (2009) Novel Campylobacter lari-like bacteria from humans and molluscs: description of Campylobacter peloridis sp. nov., Campylobacter lari subsp. concheus subsp. nov. and Campylobacter lari subsp. lari subsp. nov. Int J Syst Evol Microbiol 59:1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Diorio C, Cai J, Marmor J, Shinder R, DuBow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177:2050–2056

    PubMed  PubMed Central  CAS  Google Scholar 

  • Harrington CS, Thomson-Carter FM, Carter PE (1997) Evidence for recombination in the flagellin locus of Campylobacter jejuni: implications for the flagellin gene typing scheme. J Clin Microbiol 35:2386–2392

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ji G, Silver S (1992a) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ji G, Silver S (1992b) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci U S A 89:9474–9478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lastovica AJ, Skirrow MB (2000) Clinical significance of Campylobacter and related species other than Campylobacter jejuni and C. coli. In: Nachamkin I, Blaser MJ (eds) Campylobacter. American Society for Microbiology, Washington DC, pp 89–120

    Google Scholar 

  • Martinot M, Jaulhac B, Moog R, De Martino S, Kehrli P, Monteil H, Piemont Y (2001) Campylobacter lari bacteremia. Clin Microbiol Infect 7:96–97

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Kaneko A, Fukuyama M, Itoh T, Shingaki M, Inoue M, Moore JE, Murphy PG, Ishida Y (1996) First finding of urease-positive thermophilic strains of Campylobacter in river water in the Far East, namely, in Japan, and their phenotypic and genotypic characterization. J Appl Bacteriol 81:608–612

    CAS  Google Scholar 

  • Miller WG, Wang G, Binnewies TT, Parker CT (2008) The complete genome sequence and analysis of the human pathogen Campylobacter lari. Foodborne Pathog Dis 5:371–386

    Article  PubMed  CAS  Google Scholar 

  • Mobley HLT, Rosen BP (1982) Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc Natl Acad Sci U S A 79:6119–6122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nachamkin I, Stowell C, Skalina D, Jones AM, Hoop RM, Smibert RM (1984) Campylobacter laridis causing bacteremia in an immunosuppressed patient. Ann Intern Med 101:55–57

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Hayashi K, Nagatomi R, Nakanishi S, Matsubara K, Moore JE, Millar BC, Matsuda M (2013) Molecular identification and characterization of an arsenic four-gene operon in Campylobacter lari. Folia Microbiol 58:253–260

    Article  CAS  Google Scholar 

  • Nakanishi S, Nakajima T, Tazumi A, Katsubara K, Moore JE, Millar BC, Matsuda M (2013) Construction, expression and characterisation of recombinant DNAs of the urease gene operon from a urease-positive thermophilic Campylobacter (UPTC) isolate. Br J Biomed Sci 70:15–21

    PubMed  CAS  Google Scholar 

  • Noormohamed A, Fakhr MK (2013) Arsenic resistance and prevalence of arsenic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from retail meats. Int J Environ Res Public Health 10(8):3453–3464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Sapkota AR, Price LB, Silbergeld EK, Schwab KJ (2006) Arsenic resistance in Campylobacter spp. isolated from retail poultry products. Appl Environ Microbiol 72:3069–3071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato T, Kobayashi Y (1998) The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol 180:1655–1661

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shen Z, Han J, Wang Y, Sahin O, Zhang Q (2013) The contribution of arsB to arsenic resistance in Campylobacter jejuni. PLoS ONE 8(3):e58894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen Z, Luangtongkum T, Qiang Z, Jeon B, Wang L, Zhang Q (2014) Identification of a novel membrane transporter mediating resistance to organic arsenic in Campylobacter jejuni. Antimicrob Agents Chemother 58(4):2021–2029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki K, Wakao N, Kimura T, Sakka K, Ohmiya K (1998) Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl Environ Microbiol 64:411–418

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Jeon B, Sahin O, Zhang Q (2009) Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni. Appl Environ Microbiol 75:5064–5073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werno AM, Klena JD, Shaw GM, Murdoch DR (2002) Fatal case of Campylobacter lari prosthetic joint infection and bacteremia in an immunocompetent patient. J Clin Microbiol 40:1053–1055

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was partially supported by a Grant-in-Aid for Scientific Research (C) (no. 20580346) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to MM). MM and JEM were funded through a Great Britain Sasakawa Foundation (Butterfield) Award to jointly examine the clinical significance of Campylobacter infection in the UK and Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Matsuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, M., Kuribayashi, T., Yamamoto, S. et al. Transformation and characterization of an arsenic gene operon from urease-positive thermophilic Campylobacter (UPTC) in Escherichia coli . Folia Microbiol 61, 57–62 (2016). https://doi.org/10.1007/s12223-015-0405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0405-z

Keywords

Navigation