In vitro effects on biofilm viability and antibacterial and antiadherent activities of silymarin

Abstract

Limited treatment options in infectious diseases caused by resistant microorganisms created the need to search new approaches. Several herbal extracts are studied for their enormous therapeutic potential. Silymarin extract, from Silybum marianum (milk thistle), is an old and a new remedy for this goal. The purpose of this study is to evaluate the antibacterial and antiadherent effects of silymarin besides biofilm viability activity on standard bacterial strains. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), antiadherent/antibiofilm activity, and effects on biofilm viability of silymarin were evaluated against standard bacterial strains. MIC values were observed between 60 and >241 μg/mL (0.25–>1 mmol/L). Gram-positive bacteria were inhibited at concentrations between 60 and 120 μg/mL. Gram-negative bacteria were not inhibited by the silymarin concentrations included in this study. MBC values for Gram-positive bacteria were greater than 241 μg/mL. Adherence/biofilm formations were decreased to 15 μg/mL silymarin concentration when compared with silymarin-untreated group. Silymarin reduced the biofilm viabilities to 13 and 46 % at 1 and 0.5 mmol/L concentrations, respectively. We demonstrated that silymarin shows antibacterial and antiadherent/antibiofilm activity against certain standard bacterial strains which may be beneficial when used as a dietary supplement or a drug.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abenavoli L, Capasso R, Milic N, Capasso F (2010) Milk thistle in liver diseases: past, present, future. Phytother Res 24:1423–1432

    Article  CAS  PubMed  Google Scholar 

  2. Agarwal C, Singh RP, Dhanalakshmi S, Tyagi AK, Tecklenburg M, Sclafani RA, Agarwal R (2003) Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene 22:271–82

    Article  Google Scholar 

  3. Alviano DS, Barreto AL, Dias Fde A, Rodrigues Ide A, Rosa Mdo S, Alviano CS, Soares RM (2012) Conventional therapy and promising plant-derived compounds against trypanosomatid parasites. Front Microbiol 6(3):283

    Google Scholar 

  4. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–75

    Article  CAS  PubMed  Google Scholar 

  5. Baylan O (2010) Fosfomycin: past, present and future. Mikrobiyol Bul 44:311–321

    PubMed  Google Scholar 

  6. Bibi Y, Nisa S, Chaudhary FM, Zia M (2011) Antibacterial activity of some selected medicinal plants of Pakistan. BMC Complement Altern Med 11:52

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS Suppl 136:1–51. doi:10.1111/apm.12099

    Article  PubMed  Google Scholar 

  8. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37(6):1771–6

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase negative staphylococci to plastic tissue cultures: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Clinical and Laboratory Standards Institute (CLSI) (2012) Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement M100-S22. CLSI, Wayne

    Google Scholar 

  11. Coenye T, Nelis HJ (2010) In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 83:89–105

    Article  CAS  PubMed  Google Scholar 

  12. Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–56

    Article  CAS  PubMed  Google Scholar 

  13. Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Healthcare Epidemiology CID 33:1387–1392

    CAS  Google Scholar 

  14. Donlan RM (2011) Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Healthcare Epidemiology CID 52:1039–1045

    Google Scholar 

  15. Edwards-Jones V (2013) Alternative antimicrobial approaches to fighting multi-drug resistant infections. In: Rai M, Kon K (eds) Frightening multidrug resistance with herbal extracts, essential oils and their components. Elsevier, USA, pp 1–9

    Google Scholar 

  16. Flaig TW, Gustafson DL, Su LJ, Zirrolli JA, Crighton F, Harrison GS, Pierson AS, Agarwal R, Glodé LM (2007) A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest New Drugs 25:139–146

    Article  CAS  PubMed  Google Scholar 

  17. Gharagozloo M, Javid EN, Rezaei A, Mousavizadeh K (2013) Silymarin inhibits cell cycle progression and mTOR activity in activated human T cells: therapeutic implications for autoimmune diseases. Basic Clin Pharmacol Toxicol 112(4):251–6

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh A, Ghosh T, Jain S (2010) Silymarin-a review on the pharmacodynamics and bioavailability enhancement approaches. J Pharm Sci Tech 2:348–355

    CAS  Google Scholar 

  19. Gordon A, Hobbs DA, Bowden DS, Bailey MJ, Mitchell J, Francis AJ, Roberts SK (2006) Effects of Silybum marianum on serum hepatitis C virus RNA, alanine aminotransferase levels and well-being in patients with chronic hepatitis C. J Gastroenterol Hepatol 21:275–280

    Article  PubMed  Google Scholar 

  20. Hall MR, McGillicuddy E, Kaplan LJ (2014) Biofilm: basic principles, pathophysiology, and implications for clinicians. Surg Infect (Larchmt) 15(1):1–7

    Article  Google Scholar 

  21. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 15:305–311

    Article  PubMed  Google Scholar 

  22. Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann AJ, Williams C (2015) ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. doi:10.1016/j.cmi.2014.10.024

    PubMed  Google Scholar 

  23. http://www.cancer.gov/cancertopics/pdq/cam/milkthistle/HealthProfessional/page1 access: 07/10/2014

  24. http://www.sigmaaldrich.com/catalog/analytical/supelco/g005739?lang=en&region=TR 02/25/2015

  25. Ji-Lu S, Shao-Kang Z, Jing-Yu C, Bei-Zhong H (2012) Efficacy of acidic and basic electrolyzed water in eradicating Staphylococcus aureus biofilm. Can J Microbiol 58:448–454

    Article  Google Scholar 

  26. Kang HK, Kim HY, Cha JD (2011) Synergistic effects between silibinin and antibiotics on methicillin-resistant Staphylococcus aureus isolated from clinical specimens. Biothecnol J 13:397–408

    Google Scholar 

  27. Lahlah ZF, Meziani M, Maza A (2012) Silymarin natural antimicrobial agent extracted from Silybum marianum. Journal Academia 2:164–169

    Google Scholar 

  28. Lee DG, Kim HK, Park Y, Park SC, Woo ER, Jeong HG, Hahm KS (2003) Gram positive bacteria specific properties of silybin derived from Silbum marianum. Arch Pharm Res 26:597–600

    Article  CAS  PubMed  Google Scholar 

  29. Lee YS, Jang KS, Cha JD (2012) Synergistic antibacterial effect between silibinin and antibiotics in oral bacteria. J Biomed Biotechnol 2012:618081. doi:10.1155/2012/618081

    PubMed Central  PubMed  Google Scholar 

  30. Lucey MR, Mathurin P, Morgan TR (2009) Alcoholic hepatitis. N Engl J Med 360:2758–69

    Article  CAS  PubMed  Google Scholar 

  31. Polyak SJ, Morishima C, Lohmann V, Pal S, Lee DY, Liu Y, Graf TN, Oberlies NH (2010) Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci U S A 107(13):5995–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Polyak SJ, Ferenci P, Pawlotsky JM (2013) Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. Hepatology 57:1262–1271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Post-White J, Ladas EJ, Kelly KM (2007) Advances in the use of milk thistle (Silybum marianum). Integr Cancer Ther 6:104–109

    Article  CAS  PubMed  Google Scholar 

  34. Ramasamy K, Agarwal R (2008) Multitargeted therapy of cancer by silymarin. Cancer Lett 8:352–362

    Article  Google Scholar 

  35. Sanchez-Sampedro A, Kim HK, Choi YH, Verpoorte R, Corchete P (2007) Metabolomic alterations in elicitor treated Silybum marianum suspension cultures monitored by nuclear magnetic resonance spectroscopy. J Biotechnol 130:133–142

    Article  CAS  PubMed  Google Scholar 

  36. Simánek V, Kren V, Ulrichová J, Vicar J, Cvak L (2000) Silymarin: what is in the name…? An appeal for a change of editorial policy. Hepatology 32(2):442–4

    Article  PubMed  Google Scholar 

  37. Stepanovic S, Vukovic D, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–9

    Article  CAS  PubMed  Google Scholar 

  38. Stoddart MJ (2011) Cell viability assays: introduction. Methods Mol Biol 740:1–6

    CAS  PubMed  Google Scholar 

  39. Tamayo C, Diamond S (2007) Review of clinical trials evaluating safety and efficacy of milk thistle (Silybum marianum [L.]gaertn.). Integr Cancer Ther 6:146–157

    Article  CAS  PubMed  Google Scholar 

  40. Wagoner J, Negash A, Kane OJ, Martinez LE, Nahmias Y, Bourne N, Owen DM, Grove J, Brimacombe C, McKeating JA, Pécheur EI, Graf TN, Oberlies NH, Lohmann V, Cao F, Tavis JE, Polyak SJ (2010) Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology 51:1912–1921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Walencka E, Sadowska B, Rozalska S, Hryniewicz W, Rózalska B (2005) Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication. Pol J Microbiol 54(3):191–200

    CAS  PubMed  Google Scholar 

  42. Walencka E, Sadowska B, Rozalska S, Hryniewicz W, Rozalska B (2006) Staphylococcus aureus biofilm as a target for single or repeated doses of oxacillin, vancomycin, linezolid and/or lysostaphin. Folia Microbiol 51:381–386

    Article  CAS  Google Scholar 

  43. Wei F, Liu SK, Liu XY, Li ZJ, Li B, Zhou YL, Zhang HY, Li YW (2013) Meta-analysis: silymarin and its combination therapy for the treatment of chronic hepatitis B. Eur J Clin Microbiol Infect Dis 32:657–669

    Article  CAS  PubMed  Google Scholar 

  44. Wen Z, Dumas TE, Schrieber SJ, Hawke RL, Fried MW, Smith PC (2008) Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab Dispos 36(1):65–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was approved by Baskent University Institutional Review Board (Project no: 14/09) and supported by Baskent University Research Fund.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ebru Evren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Evren, E., Yurtcu, E. In vitro effects on biofilm viability and antibacterial and antiadherent activities of silymarin. Folia Microbiol 60, 351–356 (2015). https://doi.org/10.1007/s12223-015-0399-6

Download citation

Keywords

  • Minimal Inhibitory Concentration
  • American Type Culture Collection
  • Silymarin
  • Minimal Bactericidal Concentration
  • Silibinin