Folia Microbiologica

, Volume 60, Issue 5, pp 385–391 | Cite as

PCR diagnostic system in the treatment of prosthetic joint infections

  • D. Jahoda
  • I. Landor
  • J. Benedík
  • D. Pokorný
  • T. Judl
  • V. Barták
  • I. Jahodová
  • P. Fulín
  • M. SíbekEmail author


In our prospective study, we examined whether a multiplex PCR diagnostic method is suitable for the primary detection of pathogens. We also examined the possibility and sensitivity of detecting genes responsible for biofilm production and methicillin resistance. From 2007 to 2009, 94 patients were included in the study. A UNB (universal detection of 16S ribosomal bacterial DNA) and UNF (universal detection of pathogenic fungi) were used in the primary detection. A multiplex assay for biofilm production, methicillin resistance allowed us to distinguish between Gram positivity and negativity and to detect Staphylococci. From all the samples, the culture was positive in 53.2 % of cases, and by using the UNB method, we detected bacteria in 79.8 % of cases—the UNF detection of fungi was positive in 10.6 % of cases. In 75 % of positive findings, we detected a Gram-negative bacterium in 65.3 % of cases. In 47.2 % of Staphylococci detected, the ability to produce biofilm was confirmed. 61.1 % of the Staphylococci exhibited a methicillin resistance. Our multiplex scheme cannot yet fully replace microbial cultivation but can be a rational guide when choosing an appropriate antibiotic therapy in cases where the microbial culture is negative.


Microbial Culture Prosthetic Joint Infection Methicillin Resistance Multiplex Detection Universal Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Universal Bacterial Detection of 16S ribosomal DNA


Universal Fungal Detection by non-transcribed regions ITS1 and ITS2 between genes for 18S rDNA and 28 s rDNA




Methicillin-resistant Staphylococcus aureus


Methicillin-sensitive Staphylococcus aureus


Restriction fragment length polymorphism



This study was supported by project for conceptual development of research organization 00064203 (Ministry of Health, Czech Republic), Research program of Charles University P25/LF1/2, Grant IGA MZ ČR 14218–2.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Achermann Y, Vogt M, Leunig M, Wüst J, Trampuz A (2010) Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. J Clin Microbiol 48:1208–1214PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bergin PF, Doppelt JD, Hamilton WG, Mirick GE, Jones AE, Sritulanondha S, Helm JM, Tuan RS (2010) Detection of periprosthetic infections with use of ribosomal RNA-based polymerase chain reaction. J Bone Joint Surg 92(Am):654–663PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bernard L, Hoffmeyer P, Assal M, Vaudaux P, Schrenzel J, Lew D (2004) Trends in the treatment of orthopaedic prosthetic infections. J Antimicrob Chemother 53:127–129PubMedCrossRefGoogle Scholar
  4. Costerton JW (2005) Biofilm theory can guide the treatment of devicerelated orthopaedic infections. Clin Orthop 437:7–11Google Scholar
  5. Deirmengian C, Kardos K, Killmartin P, Cameron A, Schiller K, Parvizi J (2014) Diagnosing periprosthetic joint infection has the era of the biomarker arrived? Clin Orthop Relat Res 472:3254–3262PubMedCentralPubMedCrossRefGoogle Scholar
  6. Ehrlich GD, Stoodley P, Kathju S, Zhao Y, Mcleod BR, Balaban N, Hu FZ, Soteranos NG, Costerton JW, Stewart PS, Post JC, Lin Q (2005) Engineering approaches for the detection and control of orthopaedic biofilm infections. Clin Orthop Relat Res 437:59–66PubMedCrossRefGoogle Scholar
  7. Esteban J, Alonso-Rodriguez N, del Prado G, Ortiz-Perez A, Molina-Manso D, Cordero-Ampurero J, Sandoval E, Roblas-Fernández R, Barrena Gómez E (2012) PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop 83(3):299–304PubMedCentralPubMedCrossRefGoogle Scholar
  8. EUCAST (2009) European Committee on Antimicrobial Susceptibility Testing, Basel, SwitzerlandGoogle Scholar
  9. Gallo J, Raska M, Dendis M, Florschütz AV, Kolar M (2004) Molecular diagnosis of prosthetic joint infection. A review of evidence. Biomed Pap Med 148:123–129CrossRefGoogle Scholar
  10. Gallo J, Kolar M, Dendis M, Loveckova Y, Sauer P, Zapletalova J, Koukalova D (2008) Culture and PCR analysis of joint fluid in the diagnosis of prosthetic joint infection. New Microbiol 31:97–104PubMedGoogle Scholar
  11. Gallo J, Smizansky M, Radova L, Potomkova J (2009) Comparison of therapeutic strategies for hip and knee prosthetic joint infection. Acta Chir Orthop Traumatol Cech 76:302–309PubMedGoogle Scholar
  12. Hansen E, Zmistowski B, Parvizi J (2012) Periprosthetic joint infection: what is of the horizon? Int J Artif Organs 35(10):935–950PubMedGoogle Scholar
  13. Kobayashi N, Procop GW, Krebs V, Kobayashi H, Bauer TW (2008) Molecular identification of bacteria from aseptically loose implants. Clin Orthop Relat Res 466:1716–1725PubMedCentralPubMedCrossRefGoogle Scholar
  14. Kobayashi N, Inaba Y, Choe H, Aoki C, Ike H, Ishida T, Iwamoto N, Yukizawa Y, Saito T (2009) Simultaneous intraoperative detection of methicillin-resistant Staphylococcus and pan-bacterial infection during revision surgery: use of simple DNA release by ultrasonication and real-time polymerase chain reaction. J Bone Joint Surg 91(Am):2896–2902PubMedCrossRefGoogle Scholar
  15. McClure JA, Conly JM, Lau V, Elsayed S, Louie T, Hutchins W, Zhang K (2006) Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant staphylococci. J Clin Microbiol 44:1141–1144PubMedCentralPubMedCrossRefGoogle Scholar
  16. Moojen DJ, Spijkers SN, Schot CS, Nijhof MW, Vogely HC, Fleer A, Verbout AJ, Castelein RM, Dhert WJ, Schouls LM (2007) Identification of orthopaedic infections using broad-range polymerase chain reaction and reverse line blot hybridization. J Bone Joint Surg 89(Am):1298–1305PubMedGoogle Scholar
  17. Rozkydal Z, Benedík J, Tomás T, Dendis M, Horváth R (1999) Polymerase chain reaction in diagnosis of infection of total knee replacement. Acta Chir Orthop Traumatol Čech 66(5):272–276PubMedGoogle Scholar
  18. Spangehl MJ, Younger ASE, Masri BA, Duncan CP (1997) Diagnosis of infection following total hip arthroplasty. J Bone Joint Surg 79(Am):1578–1588Google Scholar
  19. Stoodley P, Kathju S, Hu FZ, Erdos G, Levenson JE, Mehta N, Dice B, Johnson S, Hall-Stoodley L, Nistico L, Sotereanos N, Sewecke J, Post JC, Ehrlich GD (2005) Molecular and imaging techniques for bacterial biofilms in joint arthroplasty infections. Clin Orthop Relat Res 437:31–40PubMedCrossRefGoogle Scholar
  20. Suda AJ, Kommerel M, Geiss HK, Burckhardt I, Zimmermann S, Zeifang F, Lehner B (2013) Prosthetic infection: improvement of diagnostic procedures using 16S ribosomal deoxyribonucleic acid polymerase chain reaction. Int Orthop 37(12):2515–2521PubMedCentralPubMedCrossRefGoogle Scholar
  21. Trampuz A, Steinrücken J, Clauss M, Bizzini A, Furustrand U, Uçkay I, Peter R, Bille J, Borens O (2010) New methods for the diagnosis of implant-associated infections. Rev Med Suisse 6:731–734PubMedGoogle Scholar
  22. Tsukayama DT, Estrada R, Gustilo RD (1996) Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J Bone Jt Surg 78-A:512–523Google Scholar
  23. Van Kleunen JP, Knox D, Garino JP, Lee GC (2010) Irrigation and debridement and prosthesis retention for treating acute periprosthetic infections. Clin Orthop Relat Res 468:2024–2028PubMedCentralPubMedCrossRefGoogle Scholar
  24. Vandercam B, Jeumont S, Cornu O, Yombi JC, Lecouvet F, Lefèvre P, Irenge LM, Gala JL (2008) Amplification-based DNA analysis in the diagnosis of prosthetic joint infection. J Mol Diagn 10:537–543PubMedCentralPubMedCrossRefGoogle Scholar
  25. Zhang K, McClure JA, Elsayed SR, Louie T, Conly JM (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:5026–5033PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2014

Authors and Affiliations

  • D. Jahoda
    • 1
  • I. Landor
    • 1
  • J. Benedík
    • 2
  • D. Pokorný
    • 1
  • T. Judl
    • 1
  • V. Barták
    • 1
  • I. Jahodová
    • 3
  • P. Fulín
    • 1
  • M. Síbek
    • 1
    Email author
  1. 1.1st Orthopedic Clinic in Motol Teaching Hospital, 1st Medical FacultyCharles University in PraguePrague 5Czech Republic
  2. 2.Essen University HospitalEssenGermany
  3. 3.The College of Nursing, o.p.s.PragueCzech Republic

Personalised recommendations