A highly diverse spectrum of naphthoquinone derivatives produced by the endophytic fungus Biatriospora sp. CCF 4378


A strain of Biatriospora sp. CCF 4378 was tested for the production of secondary metabolites under submerged fermentation conditions. Eleven compounds were isolated from the culture broth, and the structures of these compounds were determined using HRMS, NMR and X-ray analysis. In addition to six known naphthoquinone derivatives, i.e. ascomycone A, ascomycone B, 6-deoxyfusarubine, 6-deoxyanhydrofusarubine, herbarine and balticol A, one derivative of 2-azaanthraquinone, 6-deoxybostrycoidine, was also identified. Four new natural pyranonaphthoquinones were found, and these natural products were pleorubrin A, pleorubrin B, pleorubrin C and pleorubrin D. The toxicity on human cell lines of the crude naphthoquinone fraction and pure 6-deoxybostrycoidin, ascomycone B, pleorubrin B and 6-deoxyfusarubin was tested. Ascomycone B and 6-deoxyfusarubin elicited rapid cytotoxicity at micromolar concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Dimethyl sulfoxide


Electrospray Ionisation


Heteronuclear multiple-bond correlation


High-performance liquid chromatography


High-resolution mass spectrometry


Internal transcribed spacer


Laser desorption/ionisation


Large-subunit ribosomal DNA


Nuclear magnetic resonance


Phosphate-buffered saline


Small-subunit ribosomal DNA


  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Angelini P, Rubini A, Gigante D, Reale L, Pagiotti R, Venanzoni R (2012) The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecol 5:683–693

    Article  Google Scholar 

  3. Baker RA, Tatum JH, Nemec S (1990) Antimicrobial activity of naphthoquinones from fusaria. Mycopathologia 111:9–15

    Article  CAS  PubMed  Google Scholar 

  4. Bell AA, Wheeler MH, Liu JG, Stipanovic RD (2003) United States Department of Agriculture—Agricultural Research Service studies on polyketide toxins of Fusarium oxysporum f. sp. vasinfectum: potential targets for disease control. Pest Manag Sci 59:736–747

    Article  CAS  PubMed  Google Scholar 

  5. Brimble MA, Duncalf LJ, Nairn MR (1999) Pyranonaphthoquinone antibiotics—isolation, structure and biological activity. Nat Prod Rep 16:267–281

    Article  CAS  PubMed  Google Scholar 

  6. Hussain H, Krohn K, Ahmed I, Draeger S, Schulz B, Di Pietro S, Pescitelli G (2012) Phomopsinones A-D: four new pyrenocines from endophytic fungus Phomopsis sp. Eur J Org Chem:1783–1789

  7. Jadulco R, Brauers G, Edrada RA, Ebel R, Wray V, Sudarsono PP (2002) New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J Nat Prod 65:730–733

    Article  CAS  PubMed  Google Scholar 

  8. Kolařík M, Jankowiak R (2013) Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe. Microb Ecol 66:682–700

    Article  PubMed  Google Scholar 

  9. Koyama J, Morita I, Kobayashi N, Osakai T, Usuki Y, Taniguchi M (2005) Structure-activity relations of azafluorenone and azaanthraquinone as antimicrobial compounds. Bioorg Med Chem Lett 15:1079–1082

    Article  CAS  PubMed  Google Scholar 

  10. Narasimh N, Gopalkri KS (1974) Naphthoquinone pigments from Torula herbarum—structure of methylherbarin. J Antibiot 27:283–287

    Article  Google Scholar 

  11. Opatz T, Kolshorn H, Thines E, Anke H (2008) Ascomycones A-C, heptaketide metabolites from an unidentified ascomycete. J Nat Prod 71:1973–1976

    Article  CAS  PubMed  Google Scholar 

  12. Panno L, Bruno M, Voyron S, Anastasi A, Gnavi G, Miserere L, Varese GC (2013) Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnol 30:685–694

    Article  CAS  Google Scholar 

  13. Paranagama PA, Wijeratne EMK, Burns AM, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AAL (2007) Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod 70:1700–1705

    Article  CAS  PubMed  Google Scholar 

  14. Parisot D, Devys M, Ferezou JP, Barbier M (1983) Pigments from Nectria haematococca, anhydrofusarubin and nectriafurone. Phytochemistry 22:1301–1303

    Article  CAS  Google Scholar 

  15. Parisot D, Devys M, Barbier M (1989) 5-Deoxybostrycoidin, a new metabolite produced by the fungus Necteria haematococca (Berk and Br) WR. Z Naturforsch B J Chem Sci 44:1473–1474

    CAS  Google Scholar 

  16. Parisot D, Devys M, Barbier M (1992) Heptaketide derived polyenes from the fungus Necteria haematococca. Phytochemistry 31:4357–4358

    Article  CAS  Google Scholar 

  17. Pažoutová S, Šrůtka P, Holuša J, Chudíčková M, Kubátová A, Kolařík M (2012) Liberomyces gen. nov. with two new species of endophytic coelomycetes from broadleaf trees. Mycologia 104:198–210

    Article  PubMed  Google Scholar 

  18. Piggott MJ (2005) Naphtho[2,3-c]furan-4,9-diones and related compounds: theoretically interesting and bioactive natural and synthetic products. Tetrahedron 61:9929–9954

    Article  CAS  Google Scholar 

  19. Qiancutrone JF, Gao Q, Huang S, Klohr SE, Veitch JA, Shu YZ (1994) Arthrinone, a novel fungal metabolite from Arthrinium sp. FA-1744. J Nat Prod 57:1656–1660

    Article  CAS  Google Scholar 

  20. Qin S, Krohn K, Hussain H, Schulz B, Draeger S (2011) Pestalotheols E-H: antimicrobial metabolites from an endophytic fungus isolated from the tree Arbutus unedo. Eur J Org Chem: 5163–5166

  21. Schüffler A, Liermann JC, Kolshorn H, Opatz T, Anke H (2009a) Isolation, structure elucidation, and biological evaluation of the unusual heterodimer chrysoxanthone from the ascomycete IBWF11-95A. Tetrahedron Lett 50:4813–4815

    Article  Google Scholar 

  22. Schüffler A, Liermann JC, Kolshorn H, Opatz T, Anke H (2009b) New naphthoquinone derivatives from the ascomycete IBWF79B-90A. Z Naturforsch C Biosci 64:25–31

    Google Scholar 

  23. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  24. Shushni MAM, Mentel R, Lindequist U, Jansen R (2009) Balticols A-F, new naphthalenone derivatives with antiviral activity, from an ascomycetous fungus. Chem Biodivers 6:127–137

    Article  CAS  PubMed  Google Scholar 

  25. Shushni MAM, Singh R, Mentel R, Lindequist U (2011) Balticolid: a new 12-membered macrolide with antiviral activity from an ascomycetous fungus of marine origin. Mar Drugs 9:844–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shushni MAM, Azam F, Lindequist U (2013) Oxasetin from Lophiostoma sp of the Baltic sea: identification, in silico binding mode prediction and antibacterial evaluation against fish pathogenic bacteria. Nat Prod Comm 8:1223–1226

    CAS  Google Scholar 

  27. Simamura E, Hirai KI, Shimada H, Koyama J, Niwa Y, Shimizu S (2006) Furanonaphthoquinones cause apoptosis of cancer cells by inducing the production of reactive oxygen species by the mitochondrial voltage-dependent anion channel. Cancer Biol Ther 5:1523–1529

    Article  CAS  PubMed  Google Scholar 

  28. Sperry J, Bachu P, Brimble MA (2008) Pyranonaphthoquinones—isolation, biological activity and synthesis. Nat Prod Rep 25:376–400

    Article  CAS  PubMed  Google Scholar 

  29. Sperry J, Yuen TY, Brimble MA (2009) Enantioselective synthesis of the 3C-protease inhibitor (−)-thysanone by a Stauton-Weinreb annulation strategy. Synthesis 2009:2561–2569

    Article  Google Scholar 

  30. Stipanovic RD, Zhang JX, Bruton BD, Wheeler MH (2004) Isolation and identification of hexaketides from a pigmented Monosporascus cannonballus isolate. J Agric Food Chem 52:4109–4112

    Article  CAS  PubMed  Google Scholar 

  31. Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tatum JH, Baker RA, Berry RE (1987) Naphthofurans produced by Fusarium oxysporum isolated from citrus. Phytochemistry 26:2499–2500

    Article  CAS  Google Scholar 

  33. Thomson RH (1971) Naturally occurring quinones, 2nd edn. Academic Press, New York

    Google Scholar 

  34. Van Wagoner RM, Mantle PG, Wright JLC (2008) Biosynthesis of scorpinone, a 2-azaanthraquinone from Amorosia littoralis, a fungus from marine sediment. J Nat Prod 71:426–430

    Article  PubMed  Google Scholar 

  35. Whyte AC, Gloer KB, Gloer JB, Koster B, Malloch D (1997) New antifungal metabolites from the coprophilous fungus Cercophora sordarioides. Can J Chem 75:768–772

    Article  CAS  Google Scholar 

  36. Yamamoto Y, Kinoshita Y, Thor GR, Hasumi M, Kinoshita K, Koyama K, Takahashi K, Yoshimura I (2002) Isofuranonaphthoquinone derivatives from cultures of the lichen Arthonia cinnabarina (DC.) Wallr. Phytochemistry 60:741–745

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by the LD-COST CZ project LD13039, Czech Science Foundation project No. 13-16565S, Long-Term Research Plans of the Ministry of Education, Youth and Sports of the Czech Republic No. MSM0021620858, and Charles University projects UNCE 204013/2012. Access to instrumental and other facilities was also supported by the EU (Operational Program Prague–Competitiveness project CZ.2.16/3.1.00/24023) and by the IMIC institutional research concept RVO61388971.

Author information



Corresponding author

Correspondence to Miroslav Flieger.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 170 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stodůlková, E., Man, P., Kuzma, M. et al. A highly diverse spectrum of naphthoquinone derivatives produced by the endophytic fungus Biatriospora sp. CCF 4378. Folia Microbiol 60, 259–267 (2015). https://doi.org/10.1007/s12223-014-0366-7

Download citation


  • Endophytic Fungus
  • HMBC Correlation
  • Naphthoquinone Derivative
  • Submerged Fermentation Condition
  • Ulmus Laevis