Skip to main content
Log in

Extraction of brewer’s yeasts using different methods of cell disruption for practical biodiesel production

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The methods of preparation of fatty acids from brewer’s yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer’s waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anitescu G, Bruno TJ (2012) Biodiesel fuels from supercritical fluid processing: quality evaluation with the advanced distillation curve method and cetane. Energy Fuels 26:5256–5264

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Boulton C, Quain D (2001) Brewing yeast and fermentation, 1st edn. Blackwell Science Ltd., London, England

    Google Scholar 

  • Bravi E, Perretti G, Buzzini P, Sera RD, Fantozzi P (2009) Technological steps and yeast biomass as factors affecting the lipid content of beer during the brewing a process. J Agric Food Chem 57:6279–6284

    Article  CAS  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brillhart DD (2001) Monounsaturated fatty acid compositions and method of making. US Patent 6:183,796

    Google Scholar 

  • Buehler HJ (1958) Extraction of sterols. US Patent 2:837,540

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 5:294–306

    Article  Google Scholar 

  • Feeney RL (1956) Recovery of ergosterol. US Patent 2:730,536

    Google Scholar 

  • Feofilova EP, Sergeeva YE, Ivashechkin AA (2010) Biodiesel-fuel content, production, producers, contemporary biotechnology. Appl Biochem Microbiol 46:369–378

    Article  CAS  Google Scholar 

  • Green J, Edwin EE (1961) Production of ergosterol from yeast. US Patent 3:006,932

    Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169

    Article  CAS  Google Scholar 

  • Juzlova P, Rezanka T, Martinkova M, Kren V (1996) Long-chain fatty acids from Monascus purpureus. Phytochemistry 43:151–153

    Article  CAS  Google Scholar 

  • Khoomrung S, Chumnanpuen P, Jansa-ard S, Nookaew I, Nielsen J (2012) Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 94:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2008) Designer biodiesel optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Knothe G (2010) Biodiesel derived from a model oil enriched in palmitoleic acid, macadamia nut oil. Energy Fuels 24:2098–2103

    Article  CAS  Google Scholar 

  • Knothe G, Steidley KR (2011) Kinematic viscosity of fatty acid methyl esters. Prediction, calculated viscosity contribution of esters with unavailable data, and carbon-oxygen equivalents. Fuel 90:3217–3224

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae Biotechnol Prog 24:815–820

    CAS  Google Scholar 

  • Murray SM, O’Brien RA, Mattson KM, Ceccarelli C, Sykora RE, West KN, Davis JH (2010) The fluid-mosaic model, homeoviscous adaptation, and ionic liquids dramatic lowering of the melting point by side-chain unsaturation. Angew Chem Int Ed 49:2755–2758

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654

    Article  CAS  Google Scholar 

  • Ramirez-Verduzco LF, Rodriguez-Rodriguez JE, Jaramillo-Jacob AD (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111

    Article  CAS  Google Scholar 

  • Rezanka T, Kolouchova I, Cejkova A, Cajthaml T, Sigler K (2013a) Identification of regioisomers and enantiomers of triacylglycerols in different yeasts using reversed- and chiral-phase LC–MS. J Sep Sci 36:3310–3320

    CAS  PubMed  Google Scholar 

  • Rezanka T, Matoulkova D, Kolouchova I, Masak J, Sigler K (2013b) Brewer’s yeast as a new source of palmitoleic acid-analysis of triacylglycerols by LC-MS. J Am Oil Chem Soc 90:1327–1342

    Article  CAS  Google Scholar 

  • Rüsch G, Klaas M, Meurer PU (2004) A palmitoleic acid ester concentrate from sea buckthorn pomace. Eur J Lipid Sci Technol 106:412–416

    Article  Google Scholar 

  • Sarris D, Galiotou-Panayotou M, Koutinas AA, Komaitis M, Papanikolaou S (2011) Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J Chem Technol Biotechnol 86:1439–1448

    Article  CAS  Google Scholar 

  • Sarris D, Giannakis M, Philippoussis A, Komaitis M, Koutinas AA, Papanikolaou S (2013) Conversions of olive mill wastewater-based media by Saccharomyces cerevisiae through sterile and non-sterile bioprocesses. J Chem Technol Biotechnol 88:958–969

    Article  CAS  Google Scholar 

  • Seip JE, Zhu QQ (2011) Δ9 desaturase and its use in making polyunsaturated fatty acids. US Patent 7:923,223

    Google Scholar 

  • Sigler K, Matoulková D (2013) Waste brewer’s yeast as a source of nutritionally valuable palmitoleic acid. Kvasný prům 59:329–330

    Google Scholar 

  • Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J (2014) Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresour Technol 153:230–235

    Article  CAS  PubMed  Google Scholar 

  • Tarasova NV, Obolnikova EA, Gololobov AD, Samokhvalov GI, Chepigo SV, Ivanova GI, Imshenetsky VV, Kulikova VM (1976) Method for preparing ergosterol and ubiquinone-9 in a single process. US Patent 3:965,130

    Google Scholar 

  • Thiru M, Sankh S, Rangaswamy V (2011) Process for biodiesel production from Cryptococcus curvatus. Bioresour Technol 102:10436–10440

    Article  CAS  PubMed  Google Scholar 

  • Uppuluri P, Perumal P, Chaffin WL (2007) Analysis of RNA species of various sizes from stationary-phase planktonic yeast cells of Candida albicans. FEMS Yeast Res 7:110–117

    Article  CAS  PubMed  Google Scholar 

  • Vancura A, Rezanka T, Marsalek J, Vancurova I, Kristan V, Basarova G (1987) Effect of ammonium-ions on the composition of fatty-acids in Streptomyces fradiae, producer of tylosin. FEMS Microbiol Letts 48:357–360

    Article  CAS  Google Scholar 

  • Vancura A, Rezanka T, Marsalek J, Melzoch K, Basarova G, Kristan V (1988) Metabolism of L-threonine and fatty-acids and tylosin biosynthesis in Streptomyces fradiae. FEMS Microbiol Lett 49:411–415

    Article  CAS  Google Scholar 

  • Welch JW, Burlingame AL (1973) Very long chain fatty acids in yeast. J Bacteriol 115:464–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wild R, Patil S, Popovic M, Zappi M, Dufreche S, Bajpai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotech 48:329–335

    CAS  Google Scholar 

  • Wu S, Zhao X, Shen H, Wang Q, Zhao ZK (2011) Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol 102:1803–1807

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Li R, Hildebrand DF (2012) Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry. Prog Lipid Res 51:340–349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the project GACR P503/11/0215 and by the Institutional Internal Projects RVO61388971 and RO1914 (Ministry of Agriculture of the Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Řezanka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 35.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Řezanka, T., Matoulková, D., Kolouchová, I. et al. Extraction of brewer’s yeasts using different methods of cell disruption for practical biodiesel production. Folia Microbiol 60, 225–234 (2015). https://doi.org/10.1007/s12223-014-0360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0360-0

Keywords

Navigation