Skip to main content
Log in

Phylogenetic relationships of the wall-synthesizing enzymes of Basidiomycota confirm the phylogeny of their subphyla

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Basidiomycota is one of the phyla of kingdom Fungi. This phylum contains besides non-pathogenic species and mushrooms, the important plant pathogens, smuts and rusts, and has been recently divided into three subphyla: Ustilaginomycotina, Pucciniomycotina, and Agaricomycotina (James et al. Nature 443:818–822, 2006; Hibbert et al. Mycological Research 111:509–547, 2007). Although the monophyletic origin of Basidiomycota appears practically undisputed, the phylogenetic relationships of the three subphyla have been considered somewhat uncertain (James et al. Nature 443:818–822, 2006). Previously, we described a hypothetical evolutionary scheme of the fungal cell wall (Ruiz-Herrera and Ortiz-Castellanos FEMS Yeast Research 10:225–243, 2010) that coincided with the accepted evolution tree of kingdom fungi (Cavalier-Smith Proceedings of the Royal Society of London B 271:1251–1262, 2004; James et al. Nature 443:818–822, 2006; Hibbert et al. Mycological Research 111:509–547, 2007). Based on the results of that study, we have now made an analysis of the phylogenetic relationships of the enzymes involved in the synthesis of the cell wall polysaccharides in Basidiomycota. According to our data, there is a close relationship of the wall-synthesizing enzymes with the accepted taxonomy of the group, with a few exceptions, noticeably the absence of chitin synthase IIb subclass in Pucciniomycotina, the duplication of chitin synthase class III in the same group, and the duplication of the gene encoding β-1,3-glucan synthase (Gls) in Agaricomycotina. These results give some clues on the evolution of the cell wall in Basidiomycota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5

Similar content being viewed by others

References

  • Bartnicki-Garcıa S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    Article  PubMed  Google Scholar 

  • Bartnicki-Garcia S, Lippman E (1967) Enzymic digestion and glucan structure of hyphal walls of Phytophthora cinnamomi. Biochim Biophys Acta 136:533–543

    Article  CAS  PubMed  Google Scholar 

  • Blaschek W, Käsbauer J, Kraus J, Franz G (1992) Pythium aphanidermatum: culture, cell-wall composition, and isolation and structure of antitumour storage and solubilised cell-wall (1-3), (1-6)-β-D-glucans. Carbohydr Res 231:293–307

    Article  CAS  PubMed  Google Scholar 

  • Cabib E, Blanco N, Arroyo J (2012) Presence of a large β (1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control. Eukaryot Cell 11:388–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calvo-Mendez C, Ruiz-Herrera J (1987) Biosynthesis of chitosan in membrane fractions from Mucor rouxii by the concerted action of chitin synthetase and a particulate deacetylase. Exp Mycol 11:128–140

  • Caminero A, Calvo E, Valentín E, Ruiz-Herrera J, López JA, Sentandreu R (2014) Identification of Candida albicans mannoproteins covalently linked by disulphide and/or alkali-sensitive bridges. Yeast 31:137–144

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2004) Only six kingdoms of life. Proc Roy Soc Lond B 271:1251–1262

  • Coelho MA, Sampaio JP, Goncalves P (2010) A deviation from the bipolar-tetrapolar mating paradigm in a early diverged basidiomycete. PLoS Genet (6): e100 1052. doi:1371

  • Coronado JE, Attie O, Epstein SL, Qiu WG, Lipke PN (2006) Composition-modified matrices improve identification of homologs of Saccharomyces cerevisiae low-complexity glycoproteins. Eukaryot Cell 5:628–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coronado JE, Epstein SL, Qiu WG, Lipke PN (2007a) Discovery of recurrent sequence motifs in Saccharomyces cerevisiae cell wall proteins. MATCH Commun Math Co 58:281–299

    CAS  Google Scholar 

  • Coronado JE, Mneimneh S, Epstein SL, Qiu WG, Lipke PN (2007b) Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot Cell 6:2269–2277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis LL, Bartnicki-Garcia S (1984a) Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii. Biochemistry 23:1065–1073

    Article  CAS  Google Scholar 

  • Davis LL, Bartnicki-Garcia S (1984b) The coordination of chitosan and chitin synthesis in Mucor rouxii. J Gen Microbiol 130:2095–2102

    CAS  PubMed  Google Scholar 

  • De Nobel H, Lipke PN (1994) Is there a role for GPIs in cell wall assembly in yeast? Trends Cell Biol 4:42–45

    Article  PubMed  Google Scholar 

  • Ecker M, DEutzmann R, Lehle L, Mrsa V, Tanner W (2006) Pir proteins of Saccharomyces cerevisiae are attached to β-1,3-glucan by a new protein-carbohydrate linkage. J Biol Chem 281:11523–11529

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fonzi WA (1999) PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β 1,3 and β 1,6 glucans. J Bacteriol 181:7070–7079

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • James TY, Kauff F, Schoch CL et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  • Kapteyn JC, Montijn RC, Dijkgraaf GJ, Van den Ende H, Klis FM (1995) Covalent association of β-1,3-glucan with β-1,6-glucosylated mannoproteins in cell walls of Candida albicans. J Bacteriol 177:3788–3792

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pittet M, Conzelmann A (2007) Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771:405–420

    Article  CAS  PubMed  Google Scholar 

  • Popolo L, Gualtieri T, Ragni E (2001) The yeast cell wall salvage pathway. Med Mycol 39:111–121

    Article  CAS  PubMed  Google Scholar 

  • Ragni E, Fontaine T, Gissi C, Latgè JP, Popolo L (2007) The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast 24:297–308

    Article  CAS  PubMed  Google Scholar 

  • Reiskind JB, Mullins JT (1981) Molecular architecture of the hyphal wall of Achlya ambisexualis Raper. I. Chemical analyses. Can J Microbiol 27:1092–1099

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J (2012) Fungal cell wall: structure, synthesis, and assembly, 2nd edn. CRC Press, Boca Ratón, FL

    Book  Google Scholar 

  • Ruiz-Herrera J, Ortiz-Castellanos L (2010) Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res 10:225–243

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J, Gonzalez-Prieto JM, Ruiz-Medrano R (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1:247–256

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schwarz R, Dayhoff M (1979) Matrices for detecting distant relationships. In: Dayhoff M (ed) Atlas of protein sequences. National Biomedical Research Foundation, Washington, pp 353–358

    Google Scholar 

  • Sentandreu R, Elorza MV, Valentín E, Ruiz-Herrera J (2004) The structure and composition of the fungal cell wall. In: San-Blas G, Calderone R (eds) Pathogenic fungi: structural biology and taxonomy. Caister, Wymondham, Norfolk, pp 3–39

    Google Scholar 

  • Shahinian S, Bussey H (2000) β-1,6-glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35:477–489

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum

Download references

Acknowledgments

The present work was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT), México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ruiz-Herrera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Evolutionary relationships of Basidiomycota Cne1 proteins. See details in Materials and Methods. (PPTX 55 kb)

Fig. S2

Evolutionary relationships of Basidiomycota Cw41 proteins. See details in Materials and Methods. (PPTX 55 kb)

Fig. S3

Evolutionary relationships of Basidiomycota Rot21 proteins. See details in Materials and Methods. (PPTX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Castellanos, L., Ruiz-Herrera, J. Phylogenetic relationships of the wall-synthesizing enzymes of Basidiomycota confirm the phylogeny of their subphyla. Folia Microbiol 60, 143–150 (2015). https://doi.org/10.1007/s12223-014-0354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0354-y

Keywords

Navigation