Skip to main content

Advertisement

Log in

Expression of a metagenome-derived fumarate reductase from marine microorganisms and its characterization

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A potential novel fumarate reductase gene designated frd1A was isolated by screening a marine metagenomic library through a sequence-based strategy. Sequence analyses indicated that Frd1A and other putative fumarate reductases were closely related. The putative fumarate reductase gene was subcloned into a pETBlue-2 vector and expressed in Escherichia coli Tuner(DE3)pLacІ cells. The recombinant protein was purified to homogeneity. Functional characterization by high-performance liquid chromatography demonstrated that the recombinant Frd1A protein could catalyze the hydrogenation of fumarate to succinate acid. The Frd1A protein displayed an optimal activity at pH 7.0 and 28 °C, which could be stimulated by adding metal ions such as Zn2+ and Mg2+. The Frd1A enzyme showed a comparable affinity and catalytic efficiency under optimal reaction conditions: k m =0.227 mmol/L, v max= 29.9 U/mg, and k cat/k m=5.44 × 104 per mol/s. The identification of Frd1A protein underscores the potential of marine metagenome screening for novel biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Frd:

Fumarate reductase

E. coli :

Escherichia coli

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

Ni-NTA:

Nickel-nitrilotriacetic acid

HPLC:

High-performance liquid chromatography

EDTA:

Ethylenediaminetetraacetic acid

References

  • Agarwal L, Isar J, Saxena RK (2005) Rapid screening procedures for identification of succinic acid producers. J Biochem Biophys Methods 63:24–32

    Article  PubMed  CAS  Google Scholar 

  • Cecchini G, Schröder I, Gunsalus RP, Maklashina E (2002) Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim Biophys Acta 1553:140–157

    Article  PubMed  CAS  Google Scholar 

  • Doyle LA, Nelson D, Heinrich MC, Corless CL, Hornick JL (2012) Loss of succinate dehydrogenase subunit B (SDHB) expression is limited to a distinctive subset of gastric wild-type gastrointestinal stromal tumours: a comprehensive genotype-phenotype correlation study. Histopathology 61:801–809

    Article  PubMed  Google Scholar 

  • Graentzdoerffer A, Rauh D, Pich A, Andreesen JR (2003) Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol 179:116–130

    PubMed  CAS  Google Scholar 

  • Isayev O, Crespo-Hernández CE, Gorb L, Hill FC, Leszczynski J (2012) In silico structure-function analysis of E. cloacae nitroreductase. Proteins 80:2728–2741

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Wu LL, Zhao GC, Shen PH, Jin K, Hao ZY, Li SX, Ma GF, Luo FF, Hu GQ, Kang WL, Bi YL, Qin XM, Tang XL, Wu B (2010) Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms. Microb Cell Fact 9:91

    Article  PubMed  CAS  Google Scholar 

  • Jiang CJ, Chen G, Huang J, Huang Q, Jin K, Shen PH, Li JF, Wu B (2011) A novel β-glucosidase with lipolytic activity from a soil metagenome. Folia Microbiol (Praha) 56:563–570

    Article  CAS  Google Scholar 

  • Kennedy J, Flemer B, Jackson SA, Lejon DP, Morrissey JP, O’Gara F, Dobson AD (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8:608–628

    Article  PubMed  CAS  Google Scholar 

  • Kita K, Hirawake H, Miyadera H, Amino H, Takeo S (2002) Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. Biochim Biophys Acta 1553:123–139

    Article  PubMed  CAS  Google Scholar 

  • Lancaster CR, Simon J (2002) Succinate: quinone oxidoreductases from epsilon-proteobacteria. Biochim Biophys Acta 1553:84–101

    Article  PubMed  CAS  Google Scholar 

  • Lemos RS, Gomes CM, LeGall J, Xavier AV, Teixeira M (2002) The quinol: fumarate oxidoreductase from the sulphate reducing bacterium Desulfovibrio gigas: spectroscopic and redox studies. J Bioenerg Biomembr 34:21–30

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL (2008) Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol 99:1736–1742

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Yamaki M, Sarada M, Nakayama S, Vibat CR, Gennis RB, Nakayashiki T, Inokuchi H, Kojima S, Kita K (1996) Two hydrophobic subunits are essential for the heme b ligation and functional assembly of complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli. J Biol Chem 271:521–527

    Article  PubMed  CAS  Google Scholar 

  • Reid GA, Miles CS, Moysey RK, Pankhurst KL, Chapman SK (2000) Catalysis in fumarate reductase. Biochim Biophys Acta 1459:310–315

    Article  PubMed  CAS  Google Scholar 

  • Ruprecht J, Iwata S, Rothery RA, Weiner JH, Maklashina E, Cecchini G (2011) Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron–sulfur cluster. J Biol Chem 286:12756–12765

    Article  PubMed  CAS  Google Scholar 

  • Sakai C, Tomitsuka E, Esumi H, Harada S, Kita K (2012) Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells. Biochim Biophys Acta 1820:643–651

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Suffolk, NY, USA

    Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  • Stanislawski J (1991) Enzyme kinetics, version 1.5. Trinity Software, Fort Pierce, FL

    Google Scholar 

  • Stefanis C, Alexopoulos A, Voidarou C, Vavias S, Bezirtzoglou E (2013) Principal methods for isolation and identification of soil microbial communities. Folia Microbiol (Praha) 58:61–68

    Article  CAS  Google Scholar 

  • Takashima E, Inaoka DK, Osanai A, Nara T, Odaka M, Aoki T, Inaka K, Harada S, Kita K (2002) Characterization of the dihydroorotate dehydrogenase as a soluble fumarate reductase in Trypanosoma cruzi. Mol Biochem Parasitol 122:189–200

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Taylor P, Pealing SL, Reid GA, Chapman SK, Walkinshaw MD (1999) Structural and mechanistic mapping of a unique fumarate reductase. Nat Struct Biol 6:1108–1112

    Article  PubMed  CAS  Google Scholar 

  • Thakker C, Martínez I, San KY, Bennett GN (2012) Succinate production in Escherichia coli. Biotechnol J 7:213–224

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Li Q, Mao Y, Xing J, Su Z (2010) High-level succinic acid production and yield by lactose-induced expression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli. Appl Microbiol Biotechnol 87:2025–2035

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhu J, Bennett GN, San KY (2011) Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains. Metab Eng 13:328–335

    Article  PubMed  CAS  Google Scholar 

  • Wardrope C, Mowat CG, Walkinshaw MD, Reid GA, Chapman SK (2006) Fumarate reductase: structural and mechanistic insights from the catalytic reduction of 2-methylfumarate. FEBS Lett 580:1677–1680

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE 3rd, Boshoff HI (2011) Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7:e1002287

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Li ZM, Zhou L, Ye Q (2007) Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl Environ Microbiol 73:7837–7843

    Article  PubMed  CAS  Google Scholar 

  • Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546

    Article  PubMed  CAS  Google Scholar 

  • Xing MN, Zhang XZ, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30:920–929

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 31060016), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20104501120002), the National Postgraduate Innovation Experiment Program of Guangxi (Grant No. GXU11T32573), and the College Student Innovation-Venture Training Program of Guangxi University (Grant No. 1301106, SYJN20122314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, C., Liu, Y., Meng, C. et al. Expression of a metagenome-derived fumarate reductase from marine microorganisms and its characterization. Folia Microbiol 58, 663–671 (2013). https://doi.org/10.1007/s12223-013-0256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-013-0256-4

Keywords

Navigation