Folia Microbiologica

, Volume 58, Issue 6, pp 503–513 | Cite as

Role of oxidative stress in infectious diseases. A review

Article

Abstract

Oxidative stress plays a dual role in infections. Free radicals protect against invading microorganisms, and they can also cause tissue damage during the resulting inflammation. In the process of infection, there is generation of reactive species by myeloperoxidase, NADPH oxidase, and nitric oxide synthase. On the other hand, reactive species can be generated among others, by cytochrome P450, some metals, and xanthine oxidase. Some pathologies arising during infection can be attributed to oxidative stress and generation of reactive species in infection can even have fatal consequences. This article reviews the basic pathways in which reactive species can accumulate during infectious diseases and discusses the related health consequences.

References

  1. Abu Mraheil M, Billion A, Mohamed W, Rawool D, Hain T, Chakraborty T (2011) Adaptation of Listeria monocytogenes to oxidative and nitrosative stress in IFN-gamma-activated macrophages. Int J Med Microbiol 301(7):547–555. doi:10.1016/j.ijmm.2011.05.001 CrossRefGoogle Scholar
  2. Allen RG, Lafuse WP, Powell ND, Webster Marketon JI, Stiner-Jones LM, Sheridan JF, Bailey MT (2012) Stressor-induced increase in microbicidal activity of splenic macrophages is dependent upon peroxynitrite production. Infect Immun 80(10):3429–3437PubMedCrossRefGoogle Scholar
  3. Amir M, Liu K, Zhao EP, Czaja MJ (2012) Distinct functions of JNK and c-Jun in oxidant-induced hepatocyte death. J Cell Biochem 113(10):3254–3265. doi:10.1002/jcb.24203 PubMedCrossRefGoogle Scholar
  4. Angeloni C, Hrelia S (2012) Quercetin reduces inflammatory responses in LPS-stimulated cardiomyoblasts. Oxidative Med Cell Longev. doi:10.1155/2012/837104
  5. Atosuo JT, Lilius EM (2011) The real-time-based assessment of the microbial killing by the antimicrobial compounds of neutrophils. Sci Wold J 11:2382–2390CrossRefGoogle Scholar
  6. Awodele O, Olayemi SO, Nwite JA, Adeyemo TA (2012) Investigation of the levels of oxidative stress parameters in HIV and HIV-TB co-infected patients. J Infect Dev Ctries 6(1):79–85PubMedCrossRefGoogle Scholar
  7. Bandouchova H, Sedlackova J, Pohanka M, Novotny L, Hubalek M, Treml F, Vitula F, Pikula J (2009) Tularemia induces different biochemical responses in BALB/c mice and common voles. BMC Infect Dis 9. doi:10.1186/1471-2334-9-101
  8. Bandouchova H, Pohanka M, Vlckova K, Damkova V, Peckova L, Sedlackova J, Treml F, Vitula F, Pikula J (2011) Biochemical responses and oxidative stress in Francisella tularensis infection: a European brown hare model. Acta Vet Scand 53. doi:10.1186/1751-0147-53-2
  9. Bilgin R, Yalcin MS, Yucebilgic G, Koltas IS, Yazar S (2012) Oxidative stress in vivax malaria. Korean J Parasitol 50(4):375–377. doi:10.3347/kjp.2012.50.4.375 PubMedCrossRefGoogle Scholar
  10. Bode N, Massey C, Gonzalez-Alegre P (2012) DYT1 knock-in mice are not sensitized against mitochondrial complex-II inhibition. PLoS One 7(8). doi:10.1371/journal.pone.0042644
  11. Brodsky IE, Medzhitov R (2011) Pyroptosis: macrophage suicide exposes hidden invaders. Curr Biol 21(2):R72–R75. doi:10.1016/j.cub.2010.12.008 PubMedCrossRefGoogle Scholar
  12. Broz P, Monack DM (2011) Molecular mechanisms of inflammasome activation during microbial infections. Immunol Rev 243:174–190. doi:10.1111/j.1600-065X.2011.01041.x PubMedCrossRefGoogle Scholar
  13. Brugarolas P, Movahedzadeh F, Wang YH, Zhang N, Bartek IL, Gao YHN, Voskuil MI, Franzblau SG, He C (2012) The oxidation-sensing regulator (MosR) Is a new redox-dependent transcription factor in Mycobacterium tuberculosis. J Biol Chem 287(45). doi:10.1074/jbc.M112.388611
  14. Bunupuradah T, Ubolyam S, Hansudewechakul R, Kosalaraksa P, Ngampiyaskul C, Kanjanavanit S, Wongsawat J, Luesomboon W, Pinyakorn S, Kerr S, Ananworanich J, Chomtho S, van der Lugt J, Luplertlop N, Ruxrungtham K, Puthanakit T, Grp PS (2012) Correlation of selenium and zinc levels to antiretroviral treatment outcomes in Thai HIV-infected children without severe HIV symptoms. Eur J Clin Nutr 66(8):900–905. doi:10.1038/ejcn.2012.57 PubMedCrossRefGoogle Scholar
  15. Capone F, Guerriero E, Sorice A, Maio P, Colonna G, Castello G, Costantini S (2012) Characterization of metalloproteinases, oxidative status and inflammation levels in the different stages of fibrosis in HCV patients. Clin Biochem 45(7-8):525–529. doi:10.1016/j.clinbiochem.2012.02.004 PubMedCrossRefGoogle Scholar
  16. Carnovale CE, Ronco MT (2012) Role of nitric oxide in liver regeneration. Ann Hepatol 11(5):636–647PubMedGoogle Scholar
  17. Carr AC, McCall MR, Frei B (2000) Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 20(7):1716–1723PubMedCrossRefGoogle Scholar
  18. Chen L, Zhang Q, Chang W, Du Y, Zhang H, Cao G (2012) Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma. Eur J Cancer 43(13):1977–1987CrossRefGoogle Scholar
  19. Chochola J, Yamaguchi Y, Moguilevsky N, Bollen A, Strosberg AD, Stanislawski M (1994) Virucidal effect of myeloperoxidase on human-immunodeficiency-virus type1 infected. T-cells Antimicrob Agents Chemother 38(5):969–972CrossRefGoogle Scholar
  20. Choi J (2012) Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 52(7):1135–1150. doi:10.1016/j.freeradbiomed.2012.01.008 PubMedCrossRefGoogle Scholar
  21. deBruijne J, Bergmann JF, Reesink HW, Weegink CJ, Molenkamp R, Schinkel J, Tong X, Li J, Treitel MA, Hughes EA, van Lier JJ, van Vliet AA, Janssen HL, de Knegt RJ (2010) Antiviral activity of narlaprevir combined with ritonavir and pegylated interferon in chronic hepatitis C patients. Hepatology 52(5):1590–1599CrossRefGoogle Scholar
  22. Deshmane SL, Mukerjee R, Fan S, DelValle L, Michiels C, Sweet T, Rom I, Khalili K, Rappaport J, Amini S, Sawaya BE (2009) Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem 284(17):11364–11373PubMedCrossRefGoogle Scholar
  23. Doyle T, Chen Z, Muscoli C, Bryant L, Esposito E, Cuzzocrea S, Dagostino C, Ryerse J, Rausaria S, Kamadulski A, Neumann WL, Salvemini D (2012) Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J Neurosci 32(18):6149–6160PubMedCrossRefGoogle Scholar
  24. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. doi:10.1152/physrev.00018.2001 PubMedGoogle Scholar
  25. Du YL, Zhang H, He Y, Huang F, He ZG (2012) Mycobacterium smegmatis Lsr2 physically and functionally interacts with a new flavoprotein involved in bacterial resistance to oxidative stress. J Biochem 152(5):479–486. doi:10.1093/jb/mvs095 PubMedCrossRefGoogle Scholar
  26. Duygu F, Karsen H, Aksoy N, Taskin A (2012a) Relationship of oxidative stress in hepatitis B infection activity with HBV DNA and fibrosis. Ann Lab Med 32(2):113–118. doi:10.3343/alm.2012.32.2.113 PubMedCrossRefGoogle Scholar
  27. Duygu F, Koruk ST, Karsen H, Aksoy N, Taskin A, Hamidanoglu M (2012b) Prolidase and oxidative stress in chronic hepatitis C. J Clin Lab Anal 26(4):232–237. doi:10.1002/jcla.21510 PubMedCrossRefGoogle Scholar
  28. Ekor M, Odewabi AO, Kale OE, Adesanoye OA, Bamidele TO (2013) Celecoxib, a selective cyclooxygenase-2 inhibitor, lowers plasma cholesterol and attenuates hepatic lipid peroxidation during carbon-tetrachloride-associated hepatotoxicity in rats. Drug Chem Toxicol 36(1):1–8. doi:10.3109/01480545.2011.642380 PubMedCrossRefGoogle Scholar
  29. El-Bejjani D, Hazen SL, Mackay W, Glass NE, Hulgan T, Tungsiripat M, McComsey GA (2008) Higher plasma myeloperoxidase levels are not associated with an increased risk for cardiovascular events in HIV-infected adults. HIV Clin Trials 9(3):207–211. doi:10.1310/hct0903-207 PubMedCrossRefGoogle Scholar
  30. Erdogan S, Tosyali E, Duzguner V, Kucukgul A, Aslantas O, Celik S (2010) Cisplatin reduces Brucella melitensis-infected cell number by inducing apoptosis, oxidant and pro-inflammatory cytokine production. Res Vet Sci 88(2):218–226. doi:10.1016/j.rvsc.2009.09.002 PubMedCrossRefGoogle Scholar
  31. Esrefoglu M (2012) Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis. Hepat Mon 12(3):160–167. doi:10.5812/hepatmon.837 PubMedGoogle Scholar
  32. Evans LC, Liu HS, Pinkas GA, Thompson LP (2012) Chronic hypoxia increases peroxynitrite, MMP9 expression, and collagen accumulation in fetal guinea pig hearts. Pediatr Res 71(1):25–31. doi:10.1038/pr.2011.10 PubMedCrossRefGoogle Scholar
  33. Farias MS, Budni P, Ribeiro CM, Parisotto EB, Santos CEI, Dias JF, Dalmarco EM, Frode TS, Pedrosa RC, Wilhelm D (2012) Antioxidant supplementation attenuates oxidative stress in chronic hepatitis C patients. Gastroenterol Hepatol 35(6):386–394. doi:10.1016/j.gastrohep.2012.03.004 PubMedCrossRefGoogle Scholar
  34. Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2(4):191–206CrossRefGoogle Scholar
  35. Fukui M, Choi HJ, Zhu BT (2012) Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis. Toxicol Appl Pharmacol 262(2):156–166. doi:10.1016/j.taap.2012.04.030 PubMedCrossRefGoogle Scholar
  36. Ghashghaeinia M, Cluitmans JCA, Akel A, Dreischer P, Toulany M, Koberle M, Skabytska Y, Saki M, Biedermann T, Duszenko M, Lang F, Wieder T, Bosman G (2012) The impact of erythrocyte age on eryptosis. Br J Haematol 157(5):606–614. doi:10.1111/j.1365-2141.2012.09100.x PubMedCrossRefGoogle Scholar
  37. Gilmour MI (2012) Influence of air pollutants on allergic sensitization: the paradox of increased allergies and decreased resistance to infection. Toxicol Pathol 40(2):312–314. doi:10.1177/0192623311431949 PubMedCrossRefGoogle Scholar
  38. Granados-Oliveros G, Gomez-Vidales V, Nieto-Camacho A, Morales-Serna JA, Cardenas J, Salmon M (2013) Photoproduction of H2O2 and hydroxyl radicals catalysed by natural and super acid-modified montmorillonite and its oxidative role in the peroxidation of lipids. RSC Adv 3(3):937–944. doi:10.1039/c2ra22393g CrossRefGoogle Scholar
  39. Granot E, Golan D, Rivkin L, Kohen R (1999) Oxidative stress in healthy breast fed versus formula fed infants. Nutr Res 19(6):869–879. doi:10.1016/s0271-5317(99)00047-0 CrossRefGoogle Scholar
  40. Guasti PN, Freitas-Dell’aqua CP, Maziero RRD, Monteiro GA, Hartwig FP, Lisboa FP, Papa PM, Papa FO (2013) Lipid peroxidation and genertion of hydrogen peroxide from subfertile stallion spermatozoa during storage at refrigeration temperature. Reprod Fertil Dev 25(1):157–157CrossRefGoogle Scholar
  41. Guo CH, Chen PC, Lin KP, Shih MY, Ko WS (2012) Trace metal imbalance associated with oxidative stress and inflammatory status in anti-hepatitis C virus antibody positive subjects. Environ Toxicol Pharmacol 33(2):288–296. doi:10.1016/j.etap.2011.12.018 PubMedCrossRefGoogle Scholar
  42. Harzand A, Tamariz L, Hare JM (2012) Uric acid, heart failure survival, and the impact of xanthine oxidase inhibition. Congest Heart Fail 18(3):179–182PubMedCrossRefGoogle Scholar
  43. He Y, Abid A, Fisher R, Eller N, Mikolajczyk M, Welliver RC, Bonner AB, Scott DE, Reed JL (2012) Mucosal antibody responses are directed by viral burden in children with acute influenza infection. Influenza Other Respi Viruses. doi:10.1111/j.1750-2659.2012.00346.x
  44. Henry T, Monack DM (2007) Activation of the inflammasome upon Francisella tularensis infection: interplay of innate immune pathways and virulence factors. Cell Microbiol 9(11):2543–2551. doi:10.1111/j.1462-5822.2007.01022.x PubMedCrossRefGoogle Scholar
  45. Hnizdova I, Luhova L, Petrivalsky M (2009) Protein nitration by reactive nitrogen species. Chem List 103(10):788–794Google Scholar
  46. Hood ED, Greineder CF, Dodia C, Han J, Mesaros C, Shuvaev VV, Blair IA, Fisher AB, Muzykantov VR (2012) Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo. J Control Release. doi:10.1016/j.jconrel.2012.08.031
  47. Hsieh SL, Wu MF, Chen ST (2012) Inflammatory macrophages in dengue virus infection pyroptosis, infectivity, and enhancement of endothelial permeability. J Immunol 188Google Scholar
  48. Ischiropoulos H, Zhu L, Beckman JS (1992) Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 298:446–451PubMedCrossRefGoogle Scholar
  49. Jayakumar R, Kanthimathi MS (2012) Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotine-induced cancer cell migration. Food Chem 134(3):1580–1584. doi:10.1016/j.foodchem.2012.03.101 CrossRefGoogle Scholar
  50. Jena P, Mohanty S, Mohanty T, Kallert S, Morgelin M, Lindstrom T, Borregaard N, Stenger S, Sonawane A, Sorensen OE (2012) Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages. PLoS One 7(12). doi:10.1371/journal.pone.0050345
  51. Jetter A, Fatkenheuer G, Frank D, Klaassen T, Seeringer A, Doroshyenko O, Kirchheiner J, Hein W, Schoming E, Fuhr U, Wyen C (2010) Do activities of cytochrome P450 (CYP)3A, CYP2D6 and P-glycoprotein differ between healthy volunteers and HIV-infected patients? Antivir Ther 15(7):975–983PubMedCrossRefGoogle Scholar
  52. Jones AE, Brown KC, Werner RE, Gotzkowsky K, Gaedigk A, Blake M, Hein DW, van der Horst C, Kashuba AD (2010) Variability in drug metabolizing enzyme activity in HIV-infected patients. Eur J Clin Pharmacol 66(5):475–485PubMedCrossRefGoogle Scholar
  53. Jung N, Lehmann C, Knispel M, Meuer EK, Fischer J, Fatkenheuer G, Hartmann P, Taubert D (2012) Long-term beneficial effect of protease inhibitors on the intrinsic apoptosis of peripheral blood mononuclear cells in HIV-infected patients. HIV Med 13(8):469–478. doi:10.1111/j.1468-1293.2012.00999.x PubMedGoogle Scholar
  54. Juranek I, Bezek S (2005) Controversy of free radical hypothesis: reactive oxygen species—cause or consequence of tissue injury? Gen Physiol Biophys 24(3):263–278PubMedGoogle Scholar
  55. Juranek I, Horakova L, Rackova L, Stefek M (2010) Antioxidants in treating pathologies involving oxidative damage: an update on medicinal chemistry and biological activity of stobadine and related pyridoindoles. Curr Med Chem 17(6):552–570PubMedCrossRefGoogle Scholar
  56. Khan MU, Cheema Y, Shahbaz AU, Ahokas RA, Sun Y, Gerling IC, Bhattacharya SK, Weber KT (2012) Mitochondria play a central role in nonischemic cardiomyocyte necrosis: common to acute and chronic stressor states. Pflugers Arch 464(1):123–131. doi:10.1007/s00424-012-1079-x PubMedCrossRefGoogle Scholar
  57. Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111(6):785–793PubMedGoogle Scholar
  58. Kobayashi SD, Braughton KR, Palazzolo-Ballance AM, Kennedy AD, Sampaio E, Kristosturyan E, Whitney AR, Sturdevant DE, Dorward DW, Holland SM, Kreiswirth BN, Musser JM, Deleo FR (2010) Rapid neutrophil destruction following phagocytosis of Staphylococcus aureus. J Innate Immun 2(6):560–575. doi:10.1159/000317134 PubMedCrossRefGoogle Scholar
  59. Kokoglu OF, Ucmak H, Kurutas EB, Kuzhan N, Toprak R, Cetinkaya A, Kantarceken B, Atalay F (2012) Oxidative stress biomarkers in urine of patients with hepatitis B and C. Balk Med J 29(1):39–42. doi:10.5152/balkanmedj.2011.006 Google Scholar
  60. Kolachi NF, Kazi TG, Afridi HI, Kazi N, Kandhro GA, Shah AQ, Baig JA, Wadhwa SK, Khan S, Shah F, Jamali MK, Arain MB (2011) Distribution of copper, iron, and zinc in biological samples (scalp hair, serum, blood, and urine) of Pakistani viral hepatitis (A-E) patients and controls. Biol Trace Elem Res 143(1):116–130. doi:10.1007/s12011-010-8852-5 PubMedCrossRefGoogle Scholar
  61. Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX (2009) Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 15(1-2):43–50PubMedGoogle Scholar
  62. Krishnamurthy N, Ghosh C, Sumathi ME, Ashakiran S, Dayanand CD (2012) Biological vs chemically induced hepatitis—a comparative study of oxidative stress parameters. Biomed Res-India 23(2):289–294Google Scholar
  63. Kullisaar T, Turk S, Punab M, Mandar R (2012) Oxidative stress-cause or consequence of male genital tract disorders? Prostate 72(9):977–983. doi:10.1002/pros.21502 PubMedCrossRefGoogle Scholar
  64. Kumar A (2012) HIV and substance abuse. Curr HIV Res 10(5):365–365PubMedCrossRefGoogle Scholar
  65. Lang E, Qadri SM, Lang F (2012a) Killing me softly—suicidal erythrocyte death. Int J Biochem Cell Biol 44(8):1236–1243. doi:10.1016/j.biocel.2012.04.019 PubMedCrossRefGoogle Scholar
  66. Lang F, Lang E, Foller M (2012b) Physiology and pathophysiology of eryptosis. Transfus Med Hemother 39(5):308–314. doi:10.1159/000342534 PubMedCrossRefGoogle Scholar
  67. LeBlanc JJ, Davidson RJ, Hoffman PS (2006) Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila. J Bacteriol 188(17):6235–6244. doi:10.1128/jb.00635-06 PubMedCrossRefGoogle Scholar
  68. Lee IT, Yang CM (2012) Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol 84(5):581–590PubMedCrossRefGoogle Scholar
  69. Letonja MS, Nikolajevic-Starcevic J, Batista DCB, Osredkar J, Petrovic D (2012) Association of the C242T polymorphism in the NADPH oxidase p22 phox gene with carotid atherosclerosis in Slovenian patients with type 2 diabetes. Mol Biol Rep 39(12):10121–10130. doi:10.1007/s11033-012-1886-3 PubMedCrossRefGoogle Scholar
  70. Lindgren H, Shen H, Zingmark C, Golovliov I, Conlan W, Sjostedt A (2007) Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect Immun 75(3):1303–1309. doi:10.1128/iai.01717-06 PubMedCrossRefGoogle Scholar
  71. Llewellyn AC, Jones CL, Napier BA, Bina JE, Weiss DS (2011) Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One 6(9). doi:10.1371/journal.pone.0024201
  72. Lu D, Ma Y, Zhang W, Bao D, Dong W, Lian H, Huang L, Zhang L (2012) Knockdown of cytochrome P450 2E1 inhibits oxidative stress and apoptosis in the cTnT(R141W) dilated cardiomyopathy transgenic mice. Hypertension 60(1):81–89PubMedCrossRefGoogle Scholar
  73. Luchtemberg MN, Petronilho F, Constantino L, Gelain DP, Andrades M, Ritter C, Moreira JC, Streck EL, Dal-Pizzol F (2008) Xanthine oxidase activity in patients with sepsis. Clin Biochem 41(14-15):1186–1190. doi:10.1016/j.clinbiochem.2008.07.015 PubMedCrossRefGoogle Scholar
  74. Lupescu A, Jilani K, Zbidah M, Lang F (2012) Induction of apoptotic erythrocyte death by rotenone. Toxicology 300(3):132–137. doi:10.1016/j.tox.2012.06.007 PubMedCrossRefGoogle Scholar
  75. Malaguarnera G, Cataudella E, Giordano M, Nunnari G, Chisari G, Malaguarnera M (2012) Toxic hepatitis in occupational exposure to solvents. World J Gastroenterol 18(22):2756–2766PubMedCrossRefGoogle Scholar
  76. Manda KR, Banerjee A, Banks WA, Ercal N (2011) Highly active antiretroviral therapy drug combination induces oxidative stress and mitochondrial dysfunction in immortalized human blood–brain barrier endothelial cells. Free Radic Biol Med 50(7):801–810. doi:10.1016/j.freeradbiomed.2010.12.029 PubMedCrossRefGoogle Scholar
  77. Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243:206–214. doi:10.1111/j.1600-065X.2011.01044.x PubMedCrossRefGoogle Scholar
  78. Naganto AC, Bezerra FS, Lanzetti M, Lopes AA, Silva MA, Porto LC, Valenca SS (2012) Time course of inflammation, oxidative stress and tissue damage induced by hyperoxia in mouse lungs. Int J Exp Pathol 93(4):269–278CrossRefGoogle Scholar
  79. Nahon P, Sutton A, Rufat P, Charnaux N, Mansouri A, Moreau R, Ganne-Carrie N, Grando-Lemaire V, N’Kontchou G, Trinchet JC, Pessayre D (2012) A variant in myeloperoxidase promoter hastens the emergence of hepatocellular carcinoma in patients with HCV-related cirrhosis. J Hepatol 56(2):426–432PubMedCrossRefGoogle Scholar
  80. Nandekar PP, Sangamwar AT (2012) Cytochrome P450 1A1-mediated anticancer drug discovery: in silico findings. Expert Opin Drug Discov 7(9):771–789PubMedCrossRefGoogle Scholar
  81. Navarova J, Ujhazy E, Dubovicky M, Mach M (2004) Effect of melatonin on biochemical variables induced by phenytoin in organs of mothers, foetuses and offsprings of rats. Centr Eur J Public Health 12:S67–S69Google Scholar
  82. Navarova J, Ujhazy E, Dubovicky M, Mach M (2005) Phenytoin induced oxidative stress in pre- and postnatal rat development—effect of vitamin E on selective biochemical variables. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 149(2):325–328PubMedCrossRefGoogle Scholar
  83. Nickel D, Busch M, Mayer D, Hagemann B, Knoll V, Stenger S (2012) Hypoxia triggers the expression of human β defensin 2 and antimicrobial activity against Mycobacterium tuberculosis in human macrophages. J Immunol 188(8):4001–4007PubMedCrossRefGoogle Scholar
  84. Nunez MT, Urrutia P, Mena N, Aguirre P, Tapia V, Salazar J (2012) Iron toxicity in neurodegeneration. Biometals 25(4):761–776PubMedCrossRefGoogle Scholar
  85. Ortiz GG, Benitez-King GA, Rosales-Corral SA, Pacheco-Moises FP, Velazquez-Brizuela IE (2008) Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders. Curr Neuropharmacol 6(3):203–214PubMedCrossRefGoogle Scholar
  86. Otang WM, Grierson DS, Ndip RN (2012) Phytochemical studies and antioxidant activity of two South African medicinal plants traditionally used for the management of opportunistic fungal infections in HIV/AIDS patients. BMC Complement Altern Med 12. doi:10.1186/1472-6882-12-43
  87. Paauw A, Leverstein-van Hall MA, van Kessel KPM, Verhoef J, Fluit AC (2009) Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells. PLoS One 4(12). doi:10.1371/journal.pone.0008240
  88. Parmely MJ, Fischer JL, Pinson DM (2009) Programmed cell death and the pathogenesis of tissue injury induced by type A Francisella tularensis. FEMS Microbiol Lett 301(1):1–11. doi:10.1111/j.1574-6968.2009.01791.x PubMedCrossRefGoogle Scholar
  89. Pasalic D, Marinkovic N, Feher-Turkovic L (2012) Uric acid as one of the important factors in multifactorial disorders—facts and controversies. Biochem Med (Zagreb) 22(1):63–75CrossRefGoogle Scholar
  90. Pene F, Grimaldi D, Zuber B, Sauneuf B, Rousseau C, El Hachem C, Martin C, Belaidouni N, Balloy V, Mira JP, Chiche JD (2012) Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction. J Infect Dis 206(6):932–942. doi:10.1093/infdis/jis438 PubMedCrossRefGoogle Scholar
  91. Perluigi M, Coccia R, Butterfield DA (2012) 4-Hydroxy-2-Nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal 17(11):1590–1609. doi:10.1089/ars.2011.4406 PubMedCrossRefGoogle Scholar
  92. Persidsky Y, Ho WZ, Ramirez SH, Potula R, Abood ME, Unterwald E, Tuma R (2011) HIV-1 infection and alcohol abuse: neurocognitive impairment, mechanisms of neurodegeneration and therapeutic interventions. Brain Behav Immun 25:S61–S70. doi:10.1016/j.bbi.2011.03.001 PubMedCrossRefGoogle Scholar
  93. Pohanka M (2011) Alzheimer’s disease and related neurodegenerative disorders: implication and counteracting of melatonin. J Appl Biomed 9(4):185–196. doi:10.2478/v10136-011-0003-6 CrossRefGoogle Scholar
  94. Pohanka M, Snopkova S, Havlickova K, Bostik P, Sinkorova Z, Fusek J, Kuca K, Pikula J (2011a) Macrophage-assisted inflammation and pharmacological regulation of the cholinergic anti-inflammatory pathway. Curr Med Chem 18(4):539–551PubMedCrossRefGoogle Scholar
  95. Pohanka M, Sobotka J, Stetina R (2011b) Sulfur mustard induced oxidative stress and its alteration by epigallocatechin gallate. Toxicol Lett 201(2):105–109. doi:10.1016/j.toxlet.2010.12.011 PubMedCrossRefGoogle Scholar
  96. Pohanka M, Pavlis O, Ruttkay-Nedecky B, Sochor J, Sobotka J, Pikula J, Adam V, Kizek R (2012) Tularemia progression accompanied with oxidative stress and antioxidant alteration in spleen and liver of BALB/c mice. J Microbiol 50(3):401–408. doi:10.1007/s12275-012-1621-8 PubMedCrossRefGoogle Scholar
  97. Porter KM, Sutliff RL (2012) HIV-1, reactive oxygen species, and vascular complications. Free Radic Biol Med 53(1):143–159. doi:10.1016/j.freeradbiomed.2012.03.019 PubMedCrossRefGoogle Scholar
  98. Ramalingam M, Kim SJ (2012) Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J Neural Transm 119(8):891–910. doi:10.1007/s00702-011-0758-7 PubMedCrossRefGoogle Scholar
  99. Rathinam VAK, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nat Immunol 13(4):333–342. doi:10.1038/ni.2237 PubMedCrossRefGoogle Scholar
  100. Rinaldi S, Landucci F, De Gaudio AR (2009) Antioxidant therapy in critically septic patients. Curr Drug Targets 10(9):872–880PubMedCrossRefGoogle Scholar
  101. Robinson MA, Baumgardner JE, Otto CM (2011) Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med 51(11):1952–1965PubMedCrossRefGoogle Scholar
  102. Saito M, Nameda S, Miura NN, Adachi Y, Ohno N (2009) Effect of SPG/indomethacin treatment on sepsis, interleukin-6 production, and expression of hepatic cytochrome P450 isoforms in differing strains of mice. J Immunotoxicol 6(1):42–48PubMedCrossRefGoogle Scholar
  103. Sanchez-Lopez F, Tasset I, Aguera E, Feijoo M, Fernandez-Bolanos R, Sanchez FM, Ruiz MC, Cruz AH, Gascon F, Tunez I (2012) Oxidative stress and inflammation biomarkers in the blood of patients with Huntington’s disease. Neurol Res 34(7):721–724. doi:10.1179/1743132812y.0000000073 PubMedCrossRefGoogle Scholar
  104. Schiavone S, Sorce S, Dubois-Dauphin M, Jaquet V, Colaianna M, Zotti M, Cuomo V, Trabace L, Krause KH (2009) Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry 66(4):384–392PubMedCrossRefGoogle Scholar
  105. Schiavone S, Jaquet V, Sorce S, Dubois-Dauphin M, Hultqvist M, Backdahl L, Holmdahl R, Colaianna M, Cuomo V, Trabace L, Krause KH (2012) NADPH oxidase elevations in pyramidal neurons drive psychosocial stress-induced neuropathology. Transl Psychiatry 2:e111PubMedCrossRefGoogle Scholar
  106. Seija M, Baccino C, Nin N, Sanchez-Rodriguez C, Granados R, Ferruelo A, Martinez-Caro L, Ruiz-Cabello J, de Paula M, Noboa O, Esteban A (2012) Role of peroxynitrite in sepsis-induced acute kidney injury in an experimental model of sepsis in rats. Shock 38(4):403–410PubMedCrossRefGoogle Scholar
  107. Sharma L, Kaur J, Shukla G (2012) Role of oxidative stress and apoptosis in the placental pathology of Plasmodium berghei infected mice. PLoS One 7(3). doi:10.1371/journal.pone.0032694
  108. Shen H, Anastasio C (2011) Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid. Atmos Chem Phys 11(18):9671–9682PubMedCrossRefGoogle Scholar
  109. Singhal N, Fergusson D, Huff H, Mills EJ, la Porte C, Walmsley S, Cameron DW (2010) Design and methods of the MAINTAIN study: a randomized controlled clinical trial of micronutrient and antioxidant supplementation in untreated HIV infection. Contemp Clin Trials 31(6):604–611. doi:10.1016/j.cct.2010.08.003 PubMedCrossRefGoogle Scholar
  110. Stevanin TM, Laver JR, Poole RK, Moir JWB, Read RC (2007) Metabolism of nitric oxide by Neisseria meningitidis modifies release of NO-regulated cytokines and chemokines by human macrophages. Microbes Infect 9(8):981–987. doi:10.1016/j.micinf.2007.04.002 PubMedCrossRefGoogle Scholar
  111. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481(7381):278–286. doi:10.1038/nature10759 PubMedCrossRefGoogle Scholar
  112. Sung HJ, Son SJ, Yang SJ, Rhee KJ, Kim YS (2012) Increased expression of interleukin-1 beta in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase. BMB Rep 45(7):414–418. doi:10.5483/BMBRep.2012.45.7.088 PubMedCrossRefGoogle Scholar
  113. Suzuki T, Nunez G (2008) A role for Nod-like receptors in autophagy induced by Shigella infection. Autophagy 4(1):73–75PubMedGoogle Scholar
  114. Swerdlow RH (2012) Alzheimer’s disease pathologic cascades: who comes first, what drives what. Neurotox Res 22(3):182–194. doi:10.1007/s12640-011-9272-9 PubMedCrossRefGoogle Scholar
  115. Tamagno E, Guglielmotto M, Monteleone D, Tabaton M (2012) Amyloid-beta production: major link between oxidative stress and BACE1. Neurotox Res 22(3):208–219. doi:10.1007/s12640-011-9283-6 PubMedCrossRefGoogle Scholar
  116. Tavakoli S, Asmis R (2012) Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis. Antioxid Redox Signal 17(12):1785–1795. doi:10.1089/ars.2012.4638 PubMedCrossRefGoogle Scholar
  117. Tawadrous GA, Aziz AA, Amin DG, Eldemery A, Mostafa MAA (2012) RANTES, TNF-alpha, oxidative stress, and hematological abnormalities in hepatitis C virus infection. J Invest Med 60(6):878–882Google Scholar
  118. Van Laer K, Buts L, Foloppe N, Vertommen D, Van Belle K, Wahni K, Roos G, Nilsson L, Mateos LM, Rawat M, van Nuland NAJ, Messens J (2012) Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of mycobacteria. Mol Microbiol 86(4):787–804. doi:10.1111/mmi.12030 PubMedCrossRefGoogle Scholar
  119. Vidrio E, Jung H, Anastasio C (2008) Generation of hydroxyl radicals from dissolved transition metals in surrogate lung fluid solutions. Atmos Environ 42(18):4369–4379CrossRefGoogle Scholar
  120. Vlasova I, Vakhrusheva TV, Sokolov AV, Kostevich VA, Gusev AA, Gusev SA, Melnikova VI, Lobach AS (2012) PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Toxicol Appl Pharmacol 264(1):131–142. doi:10.1016/j.taap.2012.07.027 PubMedCrossRefGoogle Scholar
  121. Volti GL, Musumeci T, Pignatello R, Murabito P, Barbagallo I, Carbone C, Gullo A, Puglisi G (2012) Antioxidant potential of different melatonin-loaded nanomedicines in an experimental model of sepsis. Exp Biol Med 237(6):670–677. doi:10.1258/ebm.2012.011425 CrossRefGoogle Scholar
  122. Wang J, Yuan XP, Sun BG, Cao YP (2011) Inhibition of lipid peroxidation by enzymatic hydrolysates from wheat bran. Food Technol Biotechnol 49(4):481–488Google Scholar
  123. Whited CA, Warren JJ, Lavoie KD, Weinert EE, Agapie T, Winkler JR, Grayt HB (2012) Gating NO release from nitric oxide synthase. J Am Chem Soc 134(1):27–30. doi:10.1021/ja2069533 PubMedCrossRefGoogle Scholar
  124. Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273(23):14085–14089PubMedCrossRefGoogle Scholar
  125. Zang QS, Sadek H, Maass DL, Martinez B, Ma LS, Kilgore JA, Williams NS, Frantz DE, Wigginton JG, Nwariaku FE, Wolf SE, Minei JP (2012) Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. Am J Physiol-Heart Circul Physiol 302(9):H1847–H1859. doi:10.1152/ajpheart.00203.2011 CrossRefGoogle Scholar
  126. Zhong Y, Ma CM, Shahidi F (2012) Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. J Funct Food 4(1):87–93. doi:10.1016/j.jff.2011.08.003 CrossRefGoogle Scholar
  127. Zhou KQ, Canning C, Sun S (2013) Effects of rice protein hydrolysates prepared by microbial proteases and ultrafiltration on free radicals and meat lipid oxidation. LWT-Food Sci Technol 50(1):331–335. doi:10.1016/j.lwt.2012.05.002 CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2013

Authors and Affiliations

  1. 1.Faculty of Military Health SciencesUniversity of DefenceHradec KraloveCzech Republic

Personalised recommendations