Folia Microbiologica

, Volume 58, Issue 5, pp 375–384 | Cite as

Molecular identification and characterization of clustered regularly interspaced short palindromic repeat (CRISPR) gene cluster in Taylorella equigenitalis

  • Yasushi Hara
  • Kyohei Hayashi
  • Takuya Nakajima
  • Shizuko Kagawa
  • Akihiro Tazumi
  • John E Moore
  • Motoo MatsudaEmail author


Clustered regularly interspaced short palindromic repeats (CRISPRs), of approximately 10,000 base pairs (bp) in length, were shown to occur in the Japanese Taylorella equigenitalis strain, EQ59. The locus was composed of the putative CRISPRs-associated with 5 (cas5), RAMP csd1, csd2, recB, cas1, a leader region, 13 CRISPR consensus sequence repeats (each 32 bp; 5′-TCAGCCACGTTCGCGTGGCTGTGTGTTTAAAG-3′). These were in turn separated by 12 non repetitive unique spacer regions of similar length. In addition, a leader region, a transposase/IS protein, a leader region, and cas3 were also seen. All seven putative open reading frames carry their ribosome binding sites. Promoter consensus sequences at the −35 and −10 regions and putative intrinsic ρ-independent transcription terminator regions also occurred. A possible long overlap of 170 bp in length occurred between the recB and cas1 loci. Positive reverse transcription PCR signals of cas5, RAMP csd1, csd2-recB/cas1, and cas3 were generated. A putative secondary structure of the CRISPR consensus repeats was constructed. Following this, CRISPR results of the T. equigenitalis EQ59 isolate were subsequently compared with those from the Taylorella asinigenitalis MCE3 isolate.


Cluster Regularly Interspaced Short Palindromic Repeat Leader Region Short Palindromic Repeat Secondary Structure Model Extrachromosomal Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partially supported by a research project grant awarded by the Azabu University (Research Services Division).


  1. Baverud V, Nyström C, Johansson K-E (2006) Isolation and identification of Taylorella asinigenitalis from the genital tract of a stallion, first case of a natural infection. Vet Microbiol 116:294–300CrossRefPubMedGoogle Scholar
  2. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561CrossRefPubMedGoogle Scholar
  3. Breuil MF, Duquesne F, Laugier C, Petry S (2011) Phenotypic and 16S ribosomal RNA gene diversity of Taylorella asinigenitalis strains between 1995 to 2008. Vet Microbiol 148:260–266CrossRefPubMedGoogle Scholar
  4. Crowhurst RC (1977) Genital infection in mares. Vet Rec 100:476CrossRefPubMedGoogle Scholar
  5. Godde JS, Bickerton A (2006) The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol 62:718–729CrossRefPubMedGoogle Scholar
  6. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a Webtool to identify clusterd regularly interspaced short palindromic repeats. Nucleic Acids Res 35(Web Server issue):W52–W57CrossRefPubMedGoogle Scholar
  7. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:474–483CrossRefGoogle Scholar
  8. Hauser H, Richter DC, van Tonder A, Clark L, Preston A (2012) Comparative genomic analyses of the Taylorellae. Vet Microbiol 159:195–203CrossRefPubMedGoogle Scholar
  9. Hébert L, Moumen B, Duquesne F, Breuil M-F, Laugier C, Batto J-M, Renault P, Petry S (2011) Genome sequence of Taylorella equigenitalis MCE9, the causative agent of contagious equine metritis. J Bacteriol 193:1785CrossRefPubMedGoogle Scholar
  10. Hébert L, Moumen B, Pons N, Duquesne F, Breuil M-F, Goux D, Batto J-M, Laugier C, Renault P, Petry S (2012) Genomic characterization of the Taylorella genus. PLoS One 7:e29953CrossRefPubMedGoogle Scholar
  11. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170CrossRefPubMedGoogle Scholar
  12. Horvath P, Romero DA, Couté-Monvoisin A-C, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190:1401–1412CrossRefPubMedGoogle Scholar
  13. Hughes KL, Bryden JD, MacDonald F (1978) Equine contagious metritis. Aus Vet J 54:101CrossRefGoogle Scholar
  14. Jang SS, Donahue JM, Arata AB, Goris J, Hansen LM, Earley DL, Vandamme PAR, Timoney PJ, Hirsh DC (2001) Taylorella asinigenitalis sp. nov., a bacterium isolated from the genital tract of male donkeys (Equus asinus). Int J Syst Evol Microbiol 51:971–976CrossRefPubMedGoogle Scholar
  15. Jansen R, Van Embden JDA, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1576CrossRefPubMedGoogle Scholar
  16. Kamada M, Akiyama Y, Oda T, Fukuzawa Y (1981) Contagious equine metritis: isolation of Haemophilus equigenitalis from horses with endometritis in Japan. Jpn J Vet Sci 43:565–568CrossRefGoogle Scholar
  17. Katz JB, Evans LE, Hutto DL, Schroeder-Tucker LC, Carew AM, Donahue JM, Hirsh DC (2000) Clinical, bacteriologic, serologic, and pathologic features of infections with atypical Taylorella asinigenitalis in mares. J Am Vet Med Assoc 216:1945–1948CrossRefPubMedGoogle Scholar
  18. Kikuchi N, Tsunoda N, Kawakami Y, Murase N, Kawata K (1982) An outbreak of contagious equine metritis in Japan: isolation of Haemophilus equigenitalis from thoroughbred mares with genital infection in Hokkaido. Jpn J Vet Sci 44:107–114CrossRefGoogle Scholar
  19. Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, Jun JW, Park SC (2012) Complete genomic sequence of a T4-like bacteriophage, phiAS4, infecting Aeromonas salmonicida subsp. Salmonicida. Arch Virol 157:391–395CrossRefPubMedGoogle Scholar
  20. Koonin EV, Makarova KS (2009) CRISPR–Cas: an adaptive immunity system in prokaryotes. Biol Rep 1:95. doi: 10.3410/B1-95 Google Scholar
  21. Kunin V, Sorek R, Hugenholtz P (2007) Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8:R61CrossRefPubMedGoogle Scholar
  22. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi and hypothetical mechanisms of action. Biol Direct 1:1–26CrossRefGoogle Scholar
  23. Matsuda M, Moore JE (2003) Recent advances in molecular epidemiology and detection of Taylorella equigenitalis associated with contagious equine metritis (CEM). Vet Microbiol 97:111–122CrossRefPubMedGoogle Scholar
  24. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182CrossRefPubMedGoogle Scholar
  25. Moore JE, Matsuda M, Anzai T, Buckley T (2002) Molecular detection and characterization of Taylorella equigenitalis. Vet Res 152:542–544Google Scholar
  26. Ozgur NY, Ikiz S, Carioglu B, Kilicarslan R, Yilmaz H, Akay O, Ligaz A (2001) Contagious equine metritis in Turkey: first isolation of Taylorella equigenitalis from mares. Vet Res 149:120–122Google Scholar
  27. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  28. Schröder G, Schuelein R, Quebatte M, Dehio C (2011) Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci USA 108:14643–14648CrossRefPubMedGoogle Scholar
  29. Simpson DJ, Eaton-Evans W (1978) Sites in CEM infection. Vet Rec 102:488CrossRefPubMedGoogle Scholar
  30. Sugimoto C, Isayama Y, Kashiwazaki M, Fujikura T, Mitani K (1980) Detection of Haemophilus equigenitalis, the causal agent of contagious equine metritis, in Japan. Natl Inst Anim Health Quart (Jpn) 20:118–119Google Scholar
  31. Swerczek TW (1978) Contagious equine metritis in the USA. Vet Rec 102:512–513CrossRefPubMedGoogle Scholar
  32. Ter Laak EA, Fennema G, Jaartsveld FHJ (1989) Contagious equine metritis in the Netherlands. Tijdschr Diergeneeskd 114:189–201PubMedGoogle Scholar
  33. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  34. Timoney PJ, Ward J, Kelly P (1977) A contagious genital infection of mares. Vet Rec 101:103CrossRefPubMedGoogle Scholar
  35. Vandamme P, Segers P, Ryll M, Hommez J, Vancanneyt M, Coopman R, De Baere R, Van De Peer Y, Kersters K, De Wachter R, Hinz KH (1998) Pelistega europaea gen. nov., sp. nov., a bacterium associated with respiratory disease in pigeons: taxonomic structure and phylogenetic allocation. Int J Syst Bacteriol 48:431–440CrossRefPubMedGoogle Scholar
  36. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–341CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2012

Authors and Affiliations

  • Yasushi Hara
    • 1
  • Kyohei Hayashi
    • 1
  • Takuya Nakajima
    • 1
  • Shizuko Kagawa
    • 1
  • Akihiro Tazumi
    • 1
  • John E Moore
    • 2
    • 3
    • 4
  • Motoo Matsuda
    • 1
    Email author
  1. 1.Laboratory of Molecular Biology, Graduate School of Environmental Health SciencesAzabu UniversitySagamiharaJapan
  2. 2.School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
  3. 3.Department of Bacteriology, Northern Ireland Public Health LaboratoryBelfast City HospitalBelfastNorthern Ireland
  4. 4.Centre for Infection and Immunity, Health Sciences BuildingQueen’s UniversityBelfastUK

Personalised recommendations