Advertisement

Folia Microbiologica

, Volume 58, Issue 5, pp 349–360 | Cite as

Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples

  • Ezgi Haslan
  • Ayten Kimiran-ErdemEmail author
Article
  • 544 Downloads

Abstract

In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria.

Keywords

Quorum Sense Cooling Tower Homoserine Lactone Planktonic Bacterium Pseudomonas Quinolone Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by Istanbul University Scientific Research Projects Unit (BAP), project number 2787. We would especially like to thank Assoc. Prof. Gülgün Boşgelmez-Tınaz for providing us the biosensor strains C. violaceum CV026 and A. tumefaciens NT1.

References

  1. APHA (1998) Standard methods for the examination of water and wastewater. In: Clesceri LS, Greenberg AE, Eaton AD (eds) 20th edn. Washington, DC, pp 1–140Google Scholar
  2. Atkinson S, Camara M, Williams P (2007) The biofilm mode of life: mechanisms and adaptations. In: Kjelleberg S, Givskov M (eds) N-Acylhomoserine lactones, quorum sensing, and biofilm development in Gram-negative bacteria. Horizon bioscience, UK, pp 95–122Google Scholar
  3. Boşgelmez-Tınaz G, Ulusoy S, Arıdoğan B, Eroğlu F, Kaya S (2005) N-butanoyl-L-homoserine lactone (BHL) deficient Pseudomonas aeruginosa isolates from an intensive care unit. Microbiol Res 160:399–403. doi: 10.1016/j.micres.2005.03.005 CrossRefPubMedGoogle Scholar
  4. Buch C, Sigh J, Nielsen J, Larsen JL, Gram L (2003) Production of acylated homoserine lactones by different serotypes of Vibrio anguillarum both in culture and during infection of rainbow trout. Syst Appl Microbiol 26:338–349CrossRefPubMedGoogle Scholar
  5. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22(6):996–1006PubMedGoogle Scholar
  6. Conway BAD, Venu V, Speert DP (2002) Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. J Bacteriol 184(20):5678–5685. doi: 10.1128/JB.184.20.5678-5685.2002 CrossRefPubMedGoogle Scholar
  7. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298. doi: 10.1126/science.280.5361.295 CrossRefPubMedGoogle Scholar
  8. De Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11(2):279–288. doi: 10.1111/j.1462-2920.2008.01792.x CrossRefPubMedGoogle Scholar
  9. De Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68(9):4839–4849. doi: 10.1128/IAI.68.9.4839-4849.2000 CrossRefPubMedGoogle Scholar
  10. Di Bonaventura G, Stepanovic S, Picciani C, Pompilio A, Piccolomini R (2007) Effect of environmental factors on biofilm formation by clinical Stenotrophomonas maltophilia isolates. Folia Microbiol 52(1):86–90CrossRefGoogle Scholar
  11. Doğruöz N, Minnoş B, İlhan-Sungur E, Çotuk A (2009) Biofilm formation on copper and galvanized steel surfaces in a cooling-water system. IUFS J Biol 68(2):105–111Google Scholar
  12. Dondero T Jr, Rendtorff RC, Maluson GF, Weeks MR, Levy JS, Wong EW, Schaffner W (1980) An outbreak of legionnaires’ disease associated with a contaminated air-conditioning cooling tower. N Engl J Med 302(7):365–370CrossRefPubMedGoogle Scholar
  13. Eberl L, Winson MK, Sternberg C, Stewart GSAB, Christiansen G, Chhabra SR, Bycroft BJ, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20(1):127–136. doi: 10.1111/j.1365-2958.1996.tb02495.x CrossRefPubMedGoogle Scholar
  14. EWGLI (2012) European guidelines for control and prevention of travel associated Legionnaires’ disease, European Surveillance Scheme for Travel Associated Legionnaires’ Disease (EWGLINET) and the European Working Group for Legionella Infections (EWGLI). http://www.hpa.org.uk/webc/HPAwebFile/HPAweb. Accessed 30 March 2012
  15. Friedman F, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51(3):675–690. doi: 10.1046/j.1365-2958.2003.03877.x CrossRefPubMedGoogle Scholar
  16. Fuqua WC, Winans SC (1994) A LuxR–LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal tranfer in the presence of a plant tumor metabolite. J Bacteriol 176(10):2796–2806PubMedGoogle Scholar
  17. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the luxr-luxi family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275PubMedGoogle Scholar
  18. Gagnon GA, Slawson RM (1999) An efficient biofilm removal method for bacterial cells exposed to drinking water. J Microbiol Methods 34:203–214. doi: 10.1016/S0167-7012(98)00089-X CrossRefGoogle Scholar
  19. Gonzalez RH, Dijkshoorn L, Van Den Barselaar M, Nudel C (2009) Quorum sensing signal profile of Acinetobacter strains from nosocomial and environmental sources. Rev Argent Microbiol 41:73–78PubMedGoogle Scholar
  20. Gotschlich A, Huber B, Geisenberger O, Tögl A, Steidle A, Riedel K, Hill P, Tümmler B, Vandamm P, Middleton B, Camara M, Williams P, Hardman A, Eberl L (2001) Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24:1–14. doi: 10.1078/0723-2020-00013 CrossRefPubMedGoogle Scholar
  21. Gray KM, Garey JR (2001) The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology 147:2379–2387PubMedGoogle Scholar
  22. Holmes P, Sartory DP (1993) An evaluation of media for the membrane filtration enumeration of Aeromonas from drinking water. Lett Appl Microbiol 17:58–60. doi: 10.1111/j.1472-765X.1993.tb00370.x CrossRefGoogle Scholar
  23. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528PubMedGoogle Scholar
  24. Irie Y, Parsek MR (2008) Quorum sensing and microbial biofilms. In: Romeo T (ed) Bacterial biofilms. Springer, Berlin, pp 67–84CrossRefGoogle Scholar
  25. Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184(1):290–301. doi: 10.1128/JB.184.1.290-301.2002 CrossRefPubMedGoogle Scholar
  26. Karaboz I, Sukatar A (2004) Bakterilerde sosyal davranışlar. J Microbiol 2(5):23–32Google Scholar
  27. Kowalska T, Kaczmarski K, Prus W (2003) Theory and mechanism of thin-layer chromatography. In: Sherma J, Fried B (eds) Handbook of thin-layer chromatography. Marcel Dekker, New York, Chapter 2Google Scholar
  28. Laue B, Jiang Y, Chhabra SR, Jacob S, Stewart GSAB, Hardman A, Downi A, O'gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480PubMedGoogle Scholar
  29. Loubens I, Chilton WS, Dion P (1997) Detection of activity responsible for induction of the Agrobacterium tumefaciens virulence genes in bacteriological agar. Appl Environ Microbiol 63(11):4578–4580PubMedGoogle Scholar
  30. Massa S, Caruso M, Trovatelli F, Tosques M (1998) Comparison of plate count agar and R2A medium for enumeration of heterotrophic bacteria in natural mineral water. World J Microbiol Biotechnol 14:727–730. doi: 10.1023/A:1008893627877 CrossRefGoogle Scholar
  31. Mcclean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711. doi: 10.1099/00221287-143-12-3703 CrossRefPubMedGoogle Scholar
  32. Nealson KH, Platt T, Hastings W (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104(1):313–322PubMedGoogle Scholar
  33. Niu C, Clemmer KM, Bonomo RA, Rather PN (2008) Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J Bacteriol 190(9):3386–3392. doi: 10.1128/JB.01929-07 CrossRefPubMedGoogle Scholar
  34. Orrison LH, Cherry WB, Milan D (1981) Isolation of Legionella pneumophila from cooling tower water by filtration. Appl Environ Microbiol 41(5):1202–1205PubMedGoogle Scholar
  35. O'Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28(3):449–461. doi: 10.1046/j.1365-2958.1998.00797.x CrossRefPubMedGoogle Scholar
  36. Pearson JP, Passadori L, Iglewski B, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Microbiology 92:1490–1494Google Scholar
  37. Ravn L, Christensen AB, Molin S, Givskov M, Gram L (2001) Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods 44:239–251. doi: 10.1016/S0167-7012(01)00217-2 CrossRefPubMedGoogle Scholar
  38. Rivera SB, Gill P, Herrington R (2008) A low-cost, safe, effective halogen disinfectant for cooling towers. Cooling technology institute annual conference, San Antonio, USA, 3–7 February 2008, pp 1–15Google Scholar
  39. Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41(2):463–476. doi: 10.1046/j.1365-2958.2001.02532.x CrossRefPubMedGoogle Scholar
  40. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci 94(12):6036–6041CrossRefPubMedGoogle Scholar
  41. Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9. doi: 10.1111/j.1574-6968.2006.00501.x CrossRefPubMedGoogle Scholar
  42. Stickler DJ, Morris NS, Mclean RJC, Fuqua C (1998) Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl Environ Microbiol 64(9):3486–3490PubMedGoogle Scholar
  43. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GSAB (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179(17):5271–5281PubMedGoogle Scholar
  44. Swift S, Lynch MJ, Fish L, Kirke DF, Tomas JM, Stewart GSAB, Williams P (1999) Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect Immun 67(10):5192–5199PubMedGoogle Scholar
  45. Tanji Y, Nishihara T, Miyanaga K (2007) Monitoring of biofilm in cooling water system by measuring lactic acid consumption rate. Biochem Eng J 35:81–86. doi: 10.1016/j.bej.2007.01.001 CrossRefGoogle Scholar
  46. Türetgen I (2005) Su sistemlerinde mikrobiyal biyofilm oluşumunun incelenmesi. Doktora tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, p 17Google Scholar
  47. Visic KL, Fuqua C (2005) Decoding microbial chatter: cell–cell communication in bacteria. J Bacteriol 187(16):5507–5519. doi: 10.1128/JB.187.16.5507-5519.2005 CrossRefGoogle Scholar
  48. Von Bodman SB, Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an n-acylhomoserine lactone autoinducer. J Bacteriol 177(17):5000–5008Google Scholar
  49. Wai-Fong Y, Kathiravan P, Shenyang C, Xin-Yue C, Chong-Lek K, Choon-Kook S, Kok-Gan C (2012) N-Acyl homoserine lactone production by Klebsiella pneumoniae isolated from human tongue surface. Sensors 12(3):3472–3483. doi: 10.3390/s120303472 Google Scholar
  50. Wang H, Cai T, Weng M, Zhou J, Cao H, Zhong Z, Zhu J (2006) Conditional production of acyl-homoserine lactone-type quorum-sensing signals in clinical isolates of enterobacteria. J Med Microbiol 55:1751–1753. doi: 10.1099/jmm.0.46756-0 CrossRefPubMedGoogle Scholar
  51. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404. doi: 10.1111/j.1574-6976.2001.tb00583.x CrossRefPubMedGoogle Scholar
  52. Williams P (2006) Quorum sensing. Int J Med Microbiol 296:57–59. doi: 10.1016/j.ijmm.2006.01.034 CrossRefPubMedGoogle Scholar
  53. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938. doi: 10.1099/mic.0.2007/012856-0 CrossRefPubMedGoogle Scholar
  54. Winson MK, Camara M, Latifi A, Foglino M, Chhabrat SR, Daykin M, Bally M, Chapon V, Salmond GPC, Bycroft BW, Lazdunski A, Stewart GSAB, Williams P (1995) Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Microbiology 92:9427–9431Google Scholar
  55. Wood DW, Gong F, Daykin MM, Williams P, Pierson LS (1997) N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. J Bacteriol 179(24):7663–7670PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2012

Authors and Affiliations

  1. 1.Faculty of Science, Department of Biology, Section of Fundamental and Industrial MicrobiologyIstanbul UniversityIstanbulTurkey

Personalised recommendations