Skip to main content
Log in

Coevolution of bacteria and their viruses

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Coevolution between bacteria and bacteriophages can be characterized as an infinitive constant evolutionary battle (phage-host arm race), which starts during phage adsorption and penetration into host cell, continues during phage replication inside the cells, and remains preserved also during prophage lysogeny. Bacteriophage may exist inside the bacterial cells in four forms with different evolutionary strategies: as a replicating virus during the lytic cycle, in an unstable carrier state termed pseudolysogeny, as a prophage with complete genome during the lysogeny, or as a defective cryptic prophage. Some defensive mechanisms of bacteria and virus countermeasures are characterized, and some evolutionary questions concerning phage–host relationship are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Abi:

Abortive infection systems

cas:

CRISPR-associated genes

CRISPR:

Clustered regularly interspersed short palindromic repeats (prokaryotic immune system)

MTase:

Methyltransferase of RM system

REase:

Restriction endonuclease of RM system

RM:

Restriction-modification system of bacteria

References

  • Akhverdyan V, Guk ER, Tokmakova I, Stoynova NV, Yomantas YAV, Mashko SV (2011) Application of the phage Mu-driven system for the integration/amplification of target gene in the chromosome of engineered Gram-negative bacteria—mini review. Appl Microbiol Biot 91:857–871

    Article  CAS  Google Scholar 

  • Appleyard RK, McGregor JF, Baird KM (1956) Mutations to extended host range and the occurrence of phenotypic mixing in the temperate coliphage lambda. Virology 2:556–574

    Article  Google Scholar 

  • Asadulghani MD, Yoshitoshi O, Ooka T, Itoh T, Saxaguchi A, Iguchi A, Nakayama K, Hayashi T (2009) The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PloS Pathog 5(5):e 1000408. doi:10.1371/journal/ppat.1000408

    Article  Google Scholar 

  • Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophages. Ecol Lett 3:362–377

    Article  Google Scholar 

  • Brüssow H (2008) Phage-bacterium coevolution and application for bacterial pathogenesis. In: Hensel M (ed) Horizontal gene transfer in the evolution of pathogenesis. Cambridge University Press, Cambridge, pp 49–78

    Chapter  Google Scholar 

  • Brüssow H, Canchaya C, Hardt WD (2004) Phages and evolution of bacterial pathogens from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Article  PubMed  Google Scholar 

  • Canchaya C, Proux C, Fourmous G, Bruttin A, Brüssow H (2003) Prophage genomics. Microbiol Mol Biol R 67:238–276

    Article  CAS  Google Scholar 

  • Chopin MC, Chopin A, Bidnenko E (2005) Phage abortive infection in lactococci: variation on a theme. Curr Opin Microbiol 8:473–479

    Article  PubMed  CAS  Google Scholar 

  • Court DL, Oppenheim AB, Adhya SL (2007) A new look at bacteriophage lambda genetic networks. J Bacteriol 189:298–304

    Article  PubMed  CAS  Google Scholar 

  • Craig R (1981) Function of nucleoside triphosphate and polynucleotide in Escherichia coli recA protein-directed cleavage of phage lambda repressor. J Biol Chem 256:8039–8044

    PubMed  CAS  Google Scholar 

  • Dalsgaard A, Serichantalergs O, Forslund A, Lin W, Mekalanos J, Mintz E, Shimada T, Wells JG (2001) Clinical and environmental isolates of Vibrio cholerae serogroup 0141 carry the CTX prophage and the genes encoding the toxins-coregulated pili. J Clin Microbiol 39:4086–4092

    Article  PubMed  CAS  Google Scholar 

  • Davies BM, Waldor MK (2003) Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol 6:35–42

    Article  Google Scholar 

  • Deveau H, Gerueau JE, Moineau S (2010) CRISPR/CAS system and its role in phage-bacteria interactions. Ann Rev Microbiol 64:475–493

    Article  CAS  Google Scholar 

  • Devoret R, Pierre M, Morean PL (1983) Prophage phi80 is induced in Escherichia coli K12 recA430. Mol Gen Genet 189:199–206

    Article  PubMed  CAS  Google Scholar 

  • Dobzhansky T (1964) Biology, molecular and organismic. Am Zool 4:443–452

    PubMed  CAS  Google Scholar 

  • Dodd IB, Reed MR, Barr Egan J (1993) The Cro-like Apl repressor of coliphage 186 is required for prophage excision and binds near the phage attachment site. Mol Microbiol 10:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Domingues S, Chopin A, Dusko Ehrlich S, Chopin MC (2004) A phage protein confers to the lactococcal abortive infection mechanism AbiP. J Bacteriol 186:3278–3281

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  • Echols H, Murialdo H (1978) Genetic map of bacteriophage lambda. Microbiol Rev 42:577–591

    PubMed  CAS  Google Scholar 

  • Edger R, Qimron V (2010) The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. J Bacteriol 219:6291–6294

    Article  Google Scholar 

  • Eguchi Y, Ogawa T, Ogawa H (1988) Cleavage of bacteriophage phi80 cI repressor by RecA protein. J Mol Biol 5:565–573

    Article  Google Scholar 

  • Elliott J, Arber W (1978) Escherichia coli K-12 pel mutants which block phage lambda DNA injection coincide with ptsM which determines components of sugar transport system. Mol Gen Genet 161:1–8

    Article  PubMed  CAS  Google Scholar 

  • Erikson V, Lindberg AA (1976) Adsorption of phage P22 to Salmonella typhimurium. J Gen Virol 34:207–221

    Article  Google Scholar 

  • Esquinas-Rychen M, Erni B (2001) Facilitation of bacteriophage lambda DNA injection by injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). J Mol Microb Biotech 3:361–370

    CAS  Google Scholar 

  • Golais F, Sabó A (1988) Koevolution von Virus und Wirtszelle. Biol Zbl 197:267–280

    Google Scholar 

  • Gómez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332:106–109

    Article  PubMed  Google Scholar 

  • Hall AR, Scanlan PD, Buckling A (2011) Bacteria-phage coevolution and the emergence of generalist pathogens. Am Nat 177:44–53

    Article  PubMed  Google Scholar 

  • Hendrix RW (2002) Bacteriophages. Evolution of the majority. Theor Popul Biol 61:471–480

    Article  PubMed  Google Scholar 

  • Hertman I, Luria SE (1967) Transduction studies on the role of a rec+ gene in the ultraviolet mutagenesis of lambda in different genetic systems. J Mol Biol 23:117–133

    Article  PubMed  CAS  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and Archaea. Science 327:167–170

    Article  PubMed  CAS  Google Scholar 

  • Incardona NL, Selvidge L (1973) Mechanisms of adsorption and eclipse of bacteriophage phiX174. II. Attachment and eclipse with isolated Escherichia coli cell wall lipopolysaccharide. J Virol 11:775–782

    PubMed  CAS  Google Scholar 

  • Janion C (2008) Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int J Biol Sci 4:338–344

    Article  PubMed  CAS  Google Scholar 

  • Jay GS, Lloyd EA (1999) Individuality and adaptations across levels of selection. How shall we name and generalize the unit of Darwinism? P Natl Acad Sci USA 96:11904–11909

    Article  Google Scholar 

  • Kimsey HH, Waldor MK (2009) Vibrio cholerae LexA coordinates CTX prophage gene expression. J Bacteriol 191:6788–6795

    Article  PubMed  CAS  Google Scholar 

  • Koudelka AP, Hufnagel LA, Koudelka GB (2004) Purification and characterization of the repressor of the Shiga toxin-encoding bacteriophage 933 W: DNA binding, gene regulation and autocleavage. J Bacteriol 186:7659–7669

    Article  PubMed  CAS  Google Scholar 

  • Krüger DH, Bickle TA (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction system of their hosts. Microbiol Rev 47:345–360

    PubMed  Google Scholar 

  • Kutschera V, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    Article  PubMed  CAS  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteria-phage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  PubMed  CAS  Google Scholar 

  • Ladero V, Garcia P, Bascarán V, Herrero M, Alvarez MA, Suarez JE (1998) Identification of the repressor-encoding gene of the Lactobacillus gene A2. J Bacteriol 180:3474–3476

    PubMed  CAS  Google Scholar 

  • Lamont I, Richardson H, Carter DR, Egan JB (1993) Genes for the establishment and maintenance of lysogeny by the temperate coliphage 186. J Bacteriol 175:5286–5288

    PubMed  CAS  Google Scholar 

  • Lemire S, Figueroa-Bossi N, Bossi L (2011) Bacteriophage crosstalk: coordination of prophage induction by trans-acting antirepressors. PloS Genet 7(6):e1002149. doi:10.1371/journal.pgen.10002149

    Article  PubMed  CAS  Google Scholar 

  • Lewin B (2008a) Phage strategies. In: Genes IX. Jones and Bartlett Publ. pp 349–375

  • Lewin B (2008b) Transposons. In: Genes IX. Jones and Bartlett Publ. pp 521–549

  • Los M, Wegrzyn G (2012) Pseudolysogeny. Adv Virus Res 82:333–343

    Google Scholar 

  • Los JM, Los M, Wegrzyn G (2011) Bacteria carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol 6:909–924

    Article  PubMed  CAS  Google Scholar 

  • Mardanov AV, Ravin NV (2007) The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J Bacteriol 189:6333–6338

    Article  PubMed  CAS  Google Scholar 

  • Marrafini LA, Sontheimer EJ (2010) Self versus non-self versus discrimination during CRISPR RNA-directed immunity. Nature 463:568–572

    Article  Google Scholar 

  • Mayr E (1985) Natürliche Auslese. Naturwissenschaften 72:231–236

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1997) The objects of selection. P Natl Acad Sci USA 94:2091–2094

    Article  CAS  Google Scholar 

  • Mayr E (2001) What evolution is. Basic Books, New York

    Google Scholar 

  • Mayr E (2004) What makes biology unique? Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Michel B (2005) After 30 years study, the bacterial SOS response still surprises us. PloS Biol 3(7):e255. doi:10.1371/journal.pbio.0030255

    Article  PubMed  Google Scholar 

  • Mizuuchi K, Craigie R (1986) Mechanism of bacteriophage Mu transposition. Annu Rev Genet 20:385–429

    Article  PubMed  CAS  Google Scholar 

  • Molineux IJ (1991) Host-parasite interactions: recent developments in the genetic of abortive phage infections. New Biol 3:230–236

    PubMed  CAS  Google Scholar 

  • Morgan AD, Bonsall MB, Buckling A (2010) Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Evolution 64:2980–2987

    PubMed  Google Scholar 

  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  PubMed  CAS  Google Scholar 

  • Pal C, Maciá MD, Oliver A, Schachar I, Buckling A (2007) Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450:1079–1081

    Article  PubMed  CAS  Google Scholar 

  • Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F, Walker D, Libberton B, Fenton A, Hall N, Brockhurst MA (2010) Antagonistic coevolution accelerates molecular evolution. Nature 464:275–278

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski DR, Koudelka GP (2004) The preferred substrate for RecA-mediated cleavage of bacteriophage 434 repressor is the DNA-bound dimer. J Bacteriol 186:1–7

    Article  PubMed  CAS  Google Scholar 

  • Pruteanu M, Baker T (2009) Proteolysis in the SOS response and metal homeostasis in Escherichia coli. Res Microbiol 160:677–683

    Article  PubMed  CAS  Google Scholar 

  • Quinones M, Kimsey HH, Waldor MK (2005) LexA cleavage is required for CTX prophage induction. Mol Cell 17:291–300

    Article  PubMed  CAS  Google Scholar 

  • Radman M (1975) Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. Basic Life Sci 5A:355–367

    PubMed  CAS  Google Scholar 

  • Rakhuba DV, Kolomiets EI, Szwajcer DE, Novik GI (2010) Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol 59:145–155

    PubMed  CAS  Google Scholar 

  • Ranquet C, Toussaint A, de Jong H, Maenhaut-Michel G, Geiselmann J (2005) Control of phage Mu lysogenic repression. J Mol Biol 353:186–195

    Article  PubMed  CAS  Google Scholar 

  • Ravin NV (2011) N15: the linear phage-plasmid. Plasmid 65:102–109

    Article  PubMed  CAS  Google Scholar 

  • Ripp S, Miller RV (1997) The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology 143:2065–2070

    Article  CAS  Google Scholar 

  • Stern A, Sorek R (2010) The phage-host arms race: shaping the evolution of microbes. Bioessays 33:43–51

    Article  Google Scholar 

  • Susskind M, Botstein D (1978) Molecular genetics of bacteriophage P22. Microbiol Rev 42:385–413

    PubMed  CAS  Google Scholar 

  • Szybalski EH, Szybalski W (1979) A comprehensive molecular map of bacteriophage lambda. Gene 7:217–270

    Article  PubMed  CAS  Google Scholar 

  • Turner M (2011) Phage on the rampage. Antibiotic use may have driven the development of Europe’s deadly E. coli. Nature. doi:10.1038/news 2011.360

  • Vale PF, Little TJ (2010) CRISPR-mediated phage resistance and the ghost of evolution past. P Roy Soc B 277:2097–2103

    Article  CAS  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theor 1:1–30

    Google Scholar 

  • Wang J, Michel V, Hoffnung M, Charbit A (1998) Cloning of the J gene of bacteriophage lambda, expression, solubilization of the J protein: first in vitro studies on the interaction between J and LamB, its cell surface receptor. Res Microbiol 149:611–624

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Kim Y, Ma Q, Hoon HS, Pokusaeva K, Sturino JM, Wood TK (2010) Cryptic prophages help bacteria cope with adverse environments. Nature Commun 1:147. doi:10.1038/ncomms1146

    Article  Google Scholar 

  • Wegrzyn G, Licznerska K, Wegrzyn A (2012) Phage lambda—new insights into regulatory circuits. Adv Virus Res 82:155–178

    Article  PubMed  CAS  Google Scholar 

  • Werts C, Michel V, Hoffnung M, Charbit A (1994) Adsorption of bacteriophage lambda on the lamB protein of Escherichia coli K-12: point mutations in gene J of lambda responsible for extended host range. J Bacteriol 176:4941–4947

    Google Scholar 

  • Williams N, Fox DK, Shea C, Roseman S (1986) Pel, the protein that permit lambda DNA penetration of Escherichia coli, is encoded by a gene in ptsM and is required for mannose utilization by the phosphotransferase system. P Natl Acad Sci USA 83:8934–8938

    Article  CAS  Google Scholar 

  • Wilson G, Murray NE (1991) Restriction and modification systems. Annu Rev Genet 25:585–627

    Article  PubMed  CAS  Google Scholar 

  • Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genet 32:569–571

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Dr. Lionello Bossi from Centre de Génétique Moléculaire, CNRS, Université Paris-Sud, and to Dr. Sergey Mashko from Ajimonot-Genetika Research Institute Moscow for valuable information about induction of prophage Mu lysogeny.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Golais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golais, F., Hollý, J. & Vítkovská, J. Coevolution of bacteria and their viruses. Folia Microbiol 58, 177–186 (2013). https://doi.org/10.1007/s12223-012-0195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0195-5

Keywords

Navigation