Skip to main content
Log in

Lipidomic analysis of bacterial plasmalogens

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Plasmalogens are a group of lipids with potentially important, and not yet fully known, functions in organisms from bacteria to protozoans, invertebrates, and mammals. They can protect cells against the damaging effects of reactive oxygen species, protect other phospholipids or lipoprotein particles against oxidative stress, and have been implicated as signaling molecules and modulators of membrane dynamics. They have been found in many anaerobic bacterial species, and their biosynthetic pathways differ in aerobic and anaerobic organisms. The use of advanced techniques permits the identification of not only plasmalogen classes but also their positional isomers and often also individual molecular species. This paper describes direct analyses of plasmalogens from natural sources, frequently very unusual, using electrospray ionization mass spectrometry in combination with high-performance liquid chromatography and/or shotgun lipidomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

AcOLi:

Lithium acetate

AcONH4 :

Ammonium acetate

CID:

Collision-induced dissociation

CL:

Cardiolipin

DHAP:

Dihydroxyacetone phosphate

ESI-MS:

Electrospray ionization mass spectrometry

EtOH:

Ethanol

FAB:

Fast atom bombardment

FAs:

Fatty acids

GC:

Gas chromatography

HILIC:

Hydrophilic interaction liquid chromatography

i-PrOH:

Propan-2-ol

IT:

Ion trap mass spectrometer

LPC:

Lysophosphatidylcholine

MALDI:

Matrix-assisted laser desorption ionization

MeOH:

Methanol

MSMA:

Magnetic sector mass-analyzer

Nano-ESI-MS-MS:

Nano-electrospray ionization tandem mass spectrometry

ND:

Not detected

PC:

Phosphatidylcholines

PE:

Phosphatidylethanolamines

PG:

Phosphatidylglycerols

PLs:

Phospholipids

Pls:

Plasmalogens

PlsPC:

Plasmalogen phosphatidylcholine

PlsPE:

Plasmalogen ethanolamines

PlsPG:

Plasmalogen phosphatidylglycerol

PlsPS:

Plasmalogen phosphatidylserine

PS:

Phosphatidylserine

Q:

Quadrupole mass spectrometer

QqQ:

Triple quadrupole mass spectrometer

QTOF:

Hybrid quadrupole time of flight mass spectrometer

ROS:

Reactive oxygen species

TIC:

Total ion current

TLC:

Thin layer chromatography

References

  • Allison MJ, Bryant MP, Keene M, Katz I (1962) Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci II: biosynthesis of higher branched-chain fatty acids and aldehydes. J Bacteriol 83:1084–1093

    PubMed  CAS  Google Scholar 

  • Baumann NA, Hagen PO, Goldfine H (1965) Phospholipids of Clostridium butyricum: studies on plasmalogen composition and biosynthesis. J Biol Chem 240:1559–1567

    PubMed  CAS  Google Scholar 

  • Bloch K (1994) Evolutionary perfection of a small molecule, Blondes in Venetian paintings, the nine-banded armadillo, and other essays in biochemistry. Yale University, New Haven, pp 14–36

    Google Scholar 

  • Bloomfield DK, Bloch K (1960) The formation of 9-unsaturated fatty acids. J Biol Chem 235:337–345

    PubMed  CAS  Google Scholar 

  • Bollinger JG, Ii H, Sadilek M, Gelb MH (2010) Improved method for the quantification of lysophospholipids including enol ether species by liquid chromatography-tandem mass spectrometry. J Lipid Res 51:1953–1961

    Article  Google Scholar 

  • Catala A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11

    Article  PubMed  CAS  Google Scholar 

  • Christie WW, Han X (2010) Lipid analysis, 4th edn. The Oily, Bridgwater

    Google Scholar 

  • Clejan S, Guffanti AA, Cohen MA, Krulwich TA (1989) Mutation of Bacillus firmus OF4 to duramycin resistance results in substantial replacement of membrane lipid phosphatidylethanolamine by its plasmalogen form. J Bacteriol 171:1744–1746

    PubMed  CAS  Google Scholar 

  • Damsté JS, Rijpstra WIC, Geenevasen JAJ, Strous M, Jetten MSM (2005) Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J 272:4270–4283

    Article  Google Scholar 

  • Das AK, Hajra AK (1995) A simple chemical synthesis of the ether analog of lysophosphatidylcholine and platelet-activating factor. J Lipid Res 36:2459–2468

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA (2004) Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A, Kokotos G (eds) Bioactive lipids. The Oily, Bridgwater, pp 107–134

    Google Scholar 

  • Feld R, Spiteller G (1994) Search for plasmalogens in plants. Chem Phys Lipids 71:109–113

    Article  Google Scholar 

  • Goldfine H (1964) Composition of the aldehydes of Clostridium butyricum plasmalogens: cyclopropane aldehydes. J Biol Chem 239:2130–2134

    PubMed  CAS  Google Scholar 

  • Goldfine H (2010) The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res 49:493–498

    Article  PubMed  CAS  Google Scholar 

  • Goldfine H, Bloch K (1961) On the origin of unsaturated fatty acids in clostridia. J Biol Chem 236:2596–2601

    PubMed  CAS  Google Scholar 

  • Goldfine H, Bloch K (1963) Oxygen and biosynthetic reactions. In: Wright B (ed) Control mechanisms in respiration and fermentation. Ronald, New York, pp 81–103

    Google Scholar 

  • Goldfine H, Hagen P-O (1972) Bacterial plasmalogens. In: Snyder F (ed) Ether lipids: chemistry and biology. Academic, New York, pp 329–350

    Google Scholar 

  • Gross RW (1984) High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry 23:158–165

    Article  PubMed  CAS  Google Scholar 

  • Guan Z, Grünler J, Piao S, Sindelar PJ (2001) Separation and quantitation of phospholipids and their ether analogues by high-performance liquid chromatography. Anal Biochem 297:137–143

    Article  PubMed  CAS  Google Scholar 

  • Guan Z, Johnston NC, Aygun-Sunar S, Daldal F, Raetz CRH, Goldfine H (2011) Structural characterization of the polar lipids of Clostridium novyi NT. Further evidence for a novel anaerobic biosynthetic pathway to plasmalogens. BBA-Mol Cel Biol Lipids 1811:186–193

    Article  CAS  Google Scholar 

  • Hagen PO, Goldfine H (1967) Phospholipids of Clostridium butyricum: III. Further studies on the origin of the aldehyde chains of plasmalogens. J Biol Chem 242:5700–5708

    PubMed  CAS  Google Scholar 

  • Hartvigsen K, Ravandi A, Bukhave K, Hølmer G, Kuksis A (2001) Regiospecific analysis of neutral ether lipids by liquid chromatography/electrospray ionization/single quadrupole mass spectrometry: validation with synthetic compounds. J Mass Spectrom 36:1116–1124

    Article  PubMed  CAS  Google Scholar 

  • Helander IM, Haikara A (1995) Cellular fatty acyl and alkenyl residues in Megasphaera and Pectinatus species: contrasting profiles and detection of beer spoilage. Microbiology 141:1131–1137

    Article  CAS  Google Scholar 

  • Hill EE, Lands WEM (1970) Formation of acyl and alkenyl glycerol derivatives in Clostridium butyricum. Biochim Biophys Acta 202:209–211

    Article  PubMed  CAS  Google Scholar 

  • Hopmans EC, Kienhuis MVM, Rattray JE, Jaeschke A, Schouten S, Sinninghe Damsté JS (2006) Improved analysis of ladderane lipids in biomass and sediments using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Sp 20:2099–2103

    Article  CAS  Google Scholar 

  • Horrocks LA, Sharma M (1982) Plasmalogens and O-alkyl glycerophospholipids. In: Hawthorne JN, Ansell GB (eds) Phospholipids. Elsevier, Amsterdam, pp 51–93

    Google Scholar 

  • Hsu FF, Turk J (2005) Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of complex lipids: structural characterization and mechanisms of fragmentation. In: Byrdwell WC (ed) Modern methods for lipid analysis by liquid chromatography/mass spectrometry and related techniques. AOCS, Champaign, pp 61–178

    Google Scholar 

  • Hsu FF, Turk J (2007) Differentiation of 1-O-alk-1-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 18:2065–2073

    Article  PubMed  CAS  Google Scholar 

  • Hsu FF, Turk J (2010) Toward total structural analysis of cardiolipins: multiple-stage linear ion-trap mass spectrometry on the [M-2 H + 3Li]+ ions. J Amer Soc Mass Spectrom 21:1863–1869

    Article  CAS  Google Scholar 

  • Hui SP, Chiba H, Kurosawa T (2011) Liquid chromatography-mass spectrometric determination of plasmalogens in human plasma. Anal Bioanal Chem 400:1923–1931

    Article  PubMed  CAS  Google Scholar 

  • Johnston NC, Goldfine H (1982) Effects of growth temperature on fatty acid and alk-1-enyl group composition of Veillonella parvula and Megasphaera elsdenii phospholipids. J Bacteriol 149:567–575

    PubMed  CAS  Google Scholar 

  • Johnston NC, Goldfine H (1992) Replacement of the aliphatic chains of Clostridium acetobutylicum by exogenous fatty acids: regulation of phospholipid and glycolipid composition. J Bacteriol 174:1848–1853

    PubMed  CAS  Google Scholar 

  • Johnston NC, Goldfine H, Fischer W (1994) Novel polar lipid composition of Clostridium innocuum as the basis for an assessment of its taxonomic status. Microbiology 140:105–111

    Article  PubMed  CAS  Google Scholar 

  • Johnston NC, Aygun-Sunar S, Guan Z, Ribeiro AA, Daldal F, Raetz CRH, Goldfine H (2010) A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani. J Lip Res 51:1953–1961

    Article  CAS  Google Scholar 

  • Kamio Y, Kanegasa S, Takahash H (1969) Occurrence of plasmalogens in anaerobic bacteria. J Gen Appl Microbiol 15:439–451

    Article  CAS  Google Scholar 

  • Kamleh A, Barrett MP, Wildridge D, Burchmore RJS, Scheltema RA, Watson DG (2008) Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: a method with wide applicability to analysis of biomolecules. Rapid Commun Mass Spectrom 22:1912–1918

    Article  PubMed  CAS  Google Scholar 

  • Kates M (1986) Techniques of lipidology: isolation, analysis and identification of lipids. In: Work TS, Work E (eds) Laboratory techniques in biochemistry and molecular biology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Kaufman AE, Verma JN, Goldfine H (1988) Disappearance of plasmalogen-containing phospholipids in Megasphaera elsdenii. J Bacteriol 170:2770–2774

    PubMed  CAS  Google Scholar 

  • Khuller GK, Goldfine H (1974) Phospholipids of Clostridium butyricum. V. Effects of growth temperature on fatty acid, alk-1-enyl ether group, and phospholipid composition. J Lip Res 15:500–507

    CAS  Google Scholar 

  • Kim KC, Kamio Y, Takahashi H (1970) Glyceryl ether phospholipid in anaerobic bacteria. J Gen Appl Microbiol 16:321–325

    Article  CAS  Google Scholar 

  • Koga Y, Goldfine H (1984) Biosynthesis of phospholipids in Clostridium butyricum: the kinetics of synthesis of plasmalogens and the glycerol acetal of ethanolamine plasmalogen. J Bacteriol 159:597–604

    PubMed  CAS  Google Scholar 

  • Koga Y, Morii H (2007) Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol Mol Biol R 71:97–120

    Article  CAS  Google Scholar 

  • Koga Y, Nishihara M, Morii H, Akagawa-Matsushita M (1993) Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol R 57:164–182

    CAS  Google Scholar 

  • Laakso P (1997) Characterization of α- and γ-linolenic acid oils by reversed-phase high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J Amer Oil Chem Soc 74:1291–1300

    Article  CAS  Google Scholar 

  • Lanekoff I, Karlsson R (2010) Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS. Anal Bioanal Chem 397:3543–3551

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Jung S, Lowe S, Gregory Zeikus J, Hollingsworth RI (1998) A dynamically regulated transformation of a bacterial bilayer membrane to a cross-linked 2-dimensional sheet during adaptation to unfavorable environmental pressures. J Amer Chem Soc 120:5855–5863

    Article  CAS  Google Scholar 

  • Leskinen HM, Suomela JP, Baoru Y, Kallio HP (2010) Regioisomer compositions of vaccenic and oleic acid containing triacylglycerols in sea buckthorn (Hippophae rhamnoides) pulp oils: influence of origin and weather conditions. J Agric Food Chem 58:537–545

    Article  PubMed  CAS  Google Scholar 

  • MacDonald DL, Goldfine H (1990) Phosphatidylglycerol acetal of plasmenylethanolamine as an intermediate in ether lipid formation in Clostridium butyricum. Biochem Cell Biol 68:225–230

    Article  PubMed  CAS  Google Scholar 

  • Marmer WN, Nungesser E, Foglia TA (1986) Oxidation of ethyl hexadec-1-enyl ether, a plasmalogen model, in the presence of unsaturated esters. Lipids 21:648–651

    Article  CAS  Google Scholar 

  • Matthews HN, Yang TK, Jenkin HM (1980) Alk-1-enyl ether phospholipids (plasmalogens) and glycolipids of Treponema hyodysenteriae—analysis of acyl and alk-1-enyl moieties. Biochim Biophys Acta 618:273–281

    Article  PubMed  CAS  Google Scholar 

  • Mawatari S, Okuma Y, Fujino T (2007) Separation of intact plasmalogens and all other phospholipids by a single run of high performance liquid chromatography. Anal Biochem 370:54–59

    Article  PubMed  CAS  Google Scholar 

  • Meyer H, Meyer F (1971) Lipid metabolism in parasitic and free-living spirochetes Treponema pallidum (Reiter) and Treponema zuelzerae. Biochim Biophys Acta 231:93–106

    Article  PubMed  CAS  Google Scholar 

  • Morand OH, Zoeller RA, Raetz CRH (1988) Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J Biol Chem 263:11597–11606

    PubMed  CAS  Google Scholar 

  • Morita S, Takeuchi A, Kitagawa S (2010) Functional analysis of two isoforms of phosphatidylethanolamine N-methyltransferase. Biochem J 432:387–398

    Article  PubMed  CAS  Google Scholar 

  • Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Horrock LA (1983) Separation of alkenylacyl, alkylacyl, and diacyl analogues and their molecular species by high performance liquid chromatography. J Lip Res 24:1268–1275

    CAS  Google Scholar 

  • Nguyen HP, Schug KA (2008) The advantages of ESI-MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci 31:1465–1480

    Article  PubMed  CAS  Google Scholar 

  • Olsson NU, Harding AJ, Harper C, Salem N (1996) High-performance liquid chromatography method with light scattering detection for measurements of lipid class composition: analysis of brains from alcoholics. J Chromatogr B 681:213–218

    Article  CAS  Google Scholar 

  • Oulevey J, Bahl H, Thiele OW (1986) Novel alk-1-enyl ether lipids isolated from Clostridium acetobutylicum. Arch Microbiol 144:166–168

    Article  CAS  Google Scholar 

  • Paltauf F (1983) Biosynthesis of 1-O-(1′alkenyl)glycerolipids (plasmalogens). In: Mangold HK, Paltauf F (eds) Ether lipids: biochemical and biomedical aspects. Academic, New York, pp 107–128

    Google Scholar 

  • Pasciak M, Holst O, Lindner B, Mordarska H, Gamian A (2003) Novel bacterial polar lipids containing ether-linked alkyl chains, the structures and biological properties of the four major glycolipids from Propionibacterium propionicum PCM 2431 (ATCC 14157T). J Biol Chem 278:3948–3956

    Article  PubMed  CAS  Google Scholar 

  • Prins RA, Van Golde LMG (1976) Entrance of glycerol into plasmalogens of some strictly anaerobic bacteria and protozoa. FEBS Lett 63:107–111

    Article  PubMed  CAS  Google Scholar 

  • Prins RA, Akkermans-Kruyswijk J, Franklin-Klein W, Lankhorst A, Van Golde LMG (1974) Metabolism of serine and ethanolamine plasmalogens in Megasphaera elsdenii. Biochim Biophys Acta 348:361–369

    Article  PubMed  CAS  Google Scholar 

  • Reaxys (2012) Reaxys [WWW document]. URL https://www.reaxys.com. Accessed 11 June 2012

  • Rezanka T, Siristova L, Matoulkova D, Sigler K (2011) Hydrophilic interaction liquid chromatography: ESI–MS/MS of plasmalogen phospholipids from Pectinatus bacterium. Lipids 46:765–780

    Article  PubMed  CAS  Google Scholar 

  • Richmond GS, Gibellini F, Young SA, Major L, Denton H, Lilley A, Smith TK (2010) Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei. Parasitology 137:1357–1392

    Article  PubMed  CAS  Google Scholar 

  • Ring MW, Schwär G, Thiel V, Dickschat JS, Kroppenstedt RM, Schulz S, Bode HB (2006) Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacterium Myxococcus xanthus. J Biol Chem 281:36691–36700

    Article  PubMed  CAS  Google Scholar 

  • Rock CO, Jackowski S (2002) Forty years of bacterial fatty acid synthesis. Biochem Biophys Res Commun 292:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Rutters H, Sass H, Cypionka H, Rullkotter J (2001) Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol 176:435–442

    Article  PubMed  CAS  Google Scholar 

  • Scherer M, Schmitz G, Liebisch G (2010) Simultaneous quantification of cardiolipin, bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC-MS/MS including correction of isotopic overlap. Anal Chem 82:8794–8799

    Article  CAS  Google Scholar 

  • Schreiberova O, Krulikovska T, Sigler K, Cejkova A, Rezanka T (2010) RP-HPLC/MS-APCI analysis of branched chain tag prepared by precursor-directed biosynthesis with Rhodococcus erythropolis. Lipids 45:743–756

    Article  PubMed  CAS  Google Scholar 

  • Schwalbe-Herrmann M, Willmann J, Leibfritz D (2010) Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. J Chromatogr A 1217:5179–5183

    Article  PubMed  CAS  Google Scholar 

  • Silber P, Borie RP, Goldfine H (1980) The enzymes of phospholipid synthesis in Clostridium butyricum. J Lipid Res 21:1022–1031

    PubMed  CAS  Google Scholar 

  • Takatsuka Y, Kamio Y (2004) Molecular dissection of the Selenomonas ruminantium cell envelope and lysine decarboxylase involved in the biosynthesis of a polyamine covalently linked to the cell wall peptidoglycan layer. Biosci Biotechnol Biochem 68:1–19

    Article  PubMed  CAS  Google Scholar 

  • Uran S, Larsen A, Jacobsen PB, Skotland T (2001) Analysis of phospholipid species in human blood using normal-phase liquid chromatography coupled with electrospray ionization ion-trap tandem mass spectrometry. J Chromatogr B 758:265–275

    Article  CAS  Google Scholar 

  • Van Golde LMG, Prins RA, Franklin Klein W, Akkermans Kruyswijk J (1973) Phosphatidylserine and its plasmalogen analogue as major lipid constituents in Megasphaera elsdenii. Biochim Biophys Acta 326:314–323

    Article  PubMed  Google Scholar 

  • Verkley AJ, Ververgaert Th PHJ, Prins RA, Van Golde LMG (1975) Lipid phase transitions of the strictly anaerobic bacteria Veillonella parvula and Anaerovibrio lipolytica. J Bacteriol 124:1522–1528

    PubMed  CAS  Google Scholar 

  • Wagner F, Rottem S, Held HD, Uhlig S, Zahringer U (2000) Ether lipids in the cell membrane of Mycoplasma fermentans. Eur J Biochem 267:6276–6286

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Okuda S, Takahashi H (1984) Turn-over of phospholipids in Selenomonas ruminantium. J Biochem 95:521–527

    PubMed  CAS  Google Scholar 

  • Wegner GH, Foster EM (1963) Incorporation of isobutyrate and valerate into cellular plasmalogen by Bacteroides succinogenes. J Bacteriol 85:53–61

    PubMed  CAS  Google Scholar 

  • Worliczek HL, Kämpfer P, Rosengarten R, Tindall BJ, Busse HJ (2007) Polar lipid and fatty acid profiles—re-vitalizing old approaches as a modern tool for the classification of mycoplasmas? Syst Appl Microbiol 30:355–370

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project P503/11/0215 of GACR, by the Institutional Internal Project RVO61388971, and project 2B06156 of the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Řezanka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řezanka, T., Křesinová, Z., Kolouchová, I. et al. Lipidomic analysis of bacterial plasmalogens. Folia Microbiol 57, 463–472 (2012). https://doi.org/10.1007/s12223-012-0178-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0178-6

Keywords

Navigation