Skip to main content
Log in

Rapid and effective method for the separation of Bacillus subtilis vegetative cells and spores

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bisschop A, Konings WN (1976) Reconstruction of reduced nicotinamide adenine-dinuceotide oxidase activity with menadione in membrane vesicles from menaquinone-deficient Bacillus subtilis AroD. Relation between electron transfer and active transport. Eur J Biochem 67:357–365

    Article  PubMed  CAS  Google Scholar 

  • Boyles WA, Lincoln RE (1958) Separation and concentration of bacterial spores and vegetative cells by foam flotation. Appl Microbiol 6:327–334

    PubMed  CAS  Google Scholar 

  • Church BD, Halvorson H (1959) Dependence of the heat resistance of bacterial endospores on their dipicolinic acid content. Nature 183:124–125

    Article  PubMed  CAS  Google Scholar 

  • Driks A (1999) Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20

    PubMed  CAS  Google Scholar 

  • Gaudin AM, Mular AL, Oconnor RF (1960) Separation of microorganisms by flotation. II. Flotation of spores of Bacillus subtilis var. niger. Appl Microbiol 8:91–97

    PubMed  CAS  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. ASM Press, Washington

    Google Scholar 

  • Grecz N, Schneider MD, Anellis A (1962) Procedure for cleaning of Clostridium botulinum spores. J Bacteriol 84:552–558

    PubMed  CAS  Google Scholar 

  • Kawai F, Hara H, Takamatsu H, Watabe K, Matsumoto K (2006) Cardiolipin enrichment in spore membranes and its involvement in germination of Bacillus subtilis Marburg. Genes Genet Syst 81:69–76

    Article  PubMed  CAS  Google Scholar 

  • Long SK, Williams OB (1958) Method for removal of vegetative cells from bacterial spore preparations. J Bacteriol 76:332–332

    PubMed  CAS  Google Scholar 

  • Moeller R, Horneck G, Rettberg P, Mollenkopf HJ, Stackebrandt E, Nicholson WL (2006) A method for extracting RNA from dormant and germinating Bacillus subtilis strain 168 endospores. Curr Microbiol 53:227–231

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Law JF (1999) Method for purification of bacterial endospores from soils: UV resistance of natural Sonoran desert soil populations of Bacillus spp. with reference to B. subtilis strain 168. J Microbiol Methods 35:13–21

    Article  PubMed  CAS  Google Scholar 

  • Powers EM (1968) Method for obtaining free bacterial spores of Bacillus subtilis var. niger. Appl Microbiol 16:180–181

    PubMed  CAS  Google Scholar 

  • Racine FM, Vary JC (1980) Isolation and properties of membranes from Bacillus megaterium spores. J Bacteriol 143:1208–1214

    PubMed  CAS  Google Scholar 

  • Rouser G, Fleische S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    Article  PubMed  CAS  Google Scholar 

  • Sacks LE, Alderton G (1961) Behavior of bacterial spores in aqueous polymer two-phase systems. J Bacteriol 82:331–341

    PubMed  CAS  Google Scholar 

  • Seydlová G, Svobodová J (2008) Development of membrane lipids in the surfactin producer Bacillus subtilis. Folia Microbiol 53:303–307

    Article  Google Scholar 

  • Sharpe ES, Nickerson KW, Bulla LA, Aronson JN (1975) Separation of spores and parasporal crystals of Bacillus thuringiensis in gradients of certain X-ray contrasting agents. Appl Microbiol 30:1052–1053

    PubMed  CAS  Google Scholar 

  • Stewart BT, Halvorson HO (1953) Studies on the spores of aerobic bacteria. I. The occurence of alanine racemase. J Bacteriol 65:160–166

    PubMed  CAS  Google Scholar 

  • Tamir H, Gilvarg C (1966) Density gradient centrifugation for separation of sporulating forms of bacteria. J Biol Chem 241:1085–1090

    PubMed  CAS  Google Scholar 

  • Warth AD, Strominger JL (1972) Structure of peptidoglycan from spores of Bacillus subtilis. Biochemistry 11:1389–1396

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institutional Research Concept MSM0021620858. The authors thank Radovan Fišer for the technical assistance and professor Jaroslav Spížek for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Seydlová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seydlová, G., Svobodová, J. Rapid and effective method for the separation of Bacillus subtilis vegetative cells and spores. Folia Microbiol 57, 455–457 (2012). https://doi.org/10.1007/s12223-012-0157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0157-y

Keywords

Navigation