Skip to main content

A survey on distribution and toxigenicity of Aspergillus flavus from indoor and outdoor hospital environments

Abstract

In the present study, genetic diversity and mycotoxin profiles of Aspergillus flavus isolated from air (indoors and outdoors), levels (surfaces), and soils of five hospitals in Southwest Iran were examined. From a total of 146 Aspergillus colonies, 63 isolates were finally identified as A. flavus by a combination of colony morphology, microscopic criteria, and mycotoxin profiles. No Aspergillus parasiticus was isolated from examined samples. Chromatographic analyses of A. flavus isolates cultured on yeast extract–sucrose broth by tip culture method showed that approximately 10% and 45% of the isolates were able to produce aflatoxin B1 (AFB1) and cyclopiazonic acid (CPA), respectively. Around 40% of the isolates produced sclerotia on Czapek–Dox agar. The isolates were classified into four chemotypes based on the ability to produce AF and CPA that majority of them (55.5%) belonged to chemotype IV comprising non-mycotoxigenic isolates. Random amplified polymorphic DNA (RAPD) profiles generated by a combination of four selected primers were used to assess genetic relatedness of 16 selected toxigenic and non-toxigenic isolates. The resulting dendrogram demonstrated the formation of two separate clusters for the A. flavus comprised both mycotoxigenic and non-toxigenic isolates in a random distribution. The obtained results in this study showed that RAPD profiling is a promising and efficient tool to determine intra-specific genetic variation among A. flavus populations from hospital environments. A. flavus isolates, either toxigenic or non-toxigenic, should be considered as potential threats for hospitalized patients due to their obvious role in the etiology of nosocomial aspergillosis.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Batista PP, Santos JF, Oliveira NT, Pires APD, Motta CMS, Luna-Alves Lima EA (2008) Genetic characterization of Brazilian strains of Aspergillus flavus using DNA markers. Genet Mol Res 7:706–717

    PubMed  Article  CAS  Google Scholar 

  • Cabral JPS (2010) Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Sci Total Environ 408:4285–4295

    PubMed  Article  CAS  Google Scholar 

  • Cary JW, Klich MA, Beltz SB (2005) Characterization of aflatoxin-producing fungi outside of Aspergillus section Flavi. Mycologia 97:425–432

    PubMed  Article  CAS  Google Scholar 

  • Chang PK, Bennett JW, Cotty PJ (2001) Association of aflatoxin biosynthesis and sclerotial development in Aspergillus parasiticus. Mycopathologia 153:41–48

    Article  Google Scholar 

  • Chazalet V, Debeaupuis JP, Sarfati J, Lortholary J, Ribaud P, Shah P, Cornet M, Thien HV, Gluckman E, Brucker G, Latgé JP (1998) Molecular typing of environmental and patient isolates of Aspergillus fumigatus from various hospital settings. J Clin Microbiol 36:1494–1500

    PubMed  CAS  Google Scholar 

  • Cotty PJ (1989) Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology 79:808–814

    Article  Google Scholar 

  • Cotty PJ, Cardwell KF (1999) Divergence of West African and North American communities of Aspergillus section Flavi. Appl Environ Microbiol 65:2264–2266

    PubMed  CAS  Google Scholar 

  • Dendis M, Horváth R, Michálek J, Ruzicka F, Grijalva M, Bartos M, Benedík J (2003) PCR–RFLP detection and species identification of fungal pathogens in patients with febrile neutropenia. Clin Microbiol Infect 9:1191–1202

    PubMed  Article  CAS  Google Scholar 

  • Donner M, Atehnkeng J, Sikora RA, Bandyopadhyay R, Cotty PJ (2009) Distribution of Aspergillus section Flavi in soils of maize fields in three agroecological zones of Nigeria. Soil Biol Biochem 41:37–44

    Article  CAS  Google Scholar 

  • Dorner JW (1983) Production of cyclopiazonic acid by Aspergillus tamarii Kita. Appl Environ Microbiol 46:1435–1437

    PubMed  CAS  Google Scholar 

  • Gams W, Hoekstra E, Atproot A (1998) CBS course of mycology, 4th edn. Centraalbureau voor Schimmelcultures, Baarn

    Google Scholar 

  • Giorni P, Magan N, Pietri A, Bertuzzi T, Battilani P (2007) Studies on Aspergillus section Flavi isolated from maize in northern Italy. Int J Food Microbiol 113:330–338

    PubMed  Article  CAS  Google Scholar 

  • Goldman GH, Osmani SA (2008) The Aspergilli: genomics, medical aspects, biotechnology, and research methods. CRC, Boca Raton

    Google Scholar 

  • Hedayati MT, Mohseni-Bandpi A, Moradi S (2004) A survey on the pathogenic fungi in soil samples of pitted plants from Sari hospitals, Iran. J Hosp Infect 58:59–62

    PubMed  Article  CAS  Google Scholar 

  • Hoekstra ES, Samson RA, Summerbell R (2000) Method for detection and isolation of fungi in the indoor environment. In: Samson RA, Hoekstra ES, Frisvad JC (eds) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor Schimmelcultures, Baarn, pp 298–305

    Google Scholar 

  • Horn BW, Dorner JW (1999) Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of Aspergillus flavus along a transect within the United States. Appl Environ Microbiol 65:1444–1449

    PubMed  CAS  Google Scholar 

  • Klich MA (2009) Health effect of Aspergillus in food and air. Toxicol Ind Health 25:657–667

    PubMed  Article  Google Scholar 

  • Kumeda Y, Asao T (1996) Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section Flavi. Appl Environ Microbiol 62:2947–2952

    PubMed  CAS  Google Scholar 

  • Lacey J, Dutkiewicz J (1994) Bioaerosols and occupational lung disease. J Aerosol Sci 25:1371–1404

    Article  CAS  Google Scholar 

  • Lourenço A, Durigon EL, Zanotto P, Maderia JEGC, Almeida APD, Correa B (2007) Genetic diversity of environmental Aspergillus flavus strains in the state of São Paulo, Brazil by random amplified polymorphic DNA. Mem Inst Oswaldo Cruz 102:687–692

    PubMed  Article  Google Scholar 

  • Marchisio VF, Nosenzo C, Caramiello R (1992) Preliminary survey of airborne fungal propagules in Turin, Italy. Mycol Res 96:35–541

    Article  Google Scholar 

  • Muñoz P, Burillo A, Bouza E (2001) Environmental surveillance and other control measures in the prevention of nosocomial fungal infections. Clin Microbiol Infect 7:38–45

    PubMed  Article  Google Scholar 

  • Neely AN, Orloff MM (2001) Survival of some medically important fungi on hospital fabrics and plastics. Clin Microbiol 39:3360–3361

    Article  CAS  Google Scholar 

  • Nielsen KF (2003) Mycotoxin production by indoor molds. Fungal Genet Biol 39:103–117

    Article  CAS  Google Scholar 

  • Noble WC (1963) Fungi in the air of hospital wards. J Gen Microbiol 32:397–402

    PubMed  CAS  Google Scholar 

  • Pakshir K, Shekarkhar G, Mostagine S, Sabayan B, Vaghefikia A (2007) Monitoring of airborne fungi in two general hospitals in Shiraz, Southern Iran. Iran J Med Sci 32:240–244

    Google Scholar 

  • Panagopoulou P, Filioti J, Petrikkos G, Giakouppi P, Anatoliotaki M, Farmaki E, Kanta A, Apostolakou H, Avlami A, Samonis G, Roilides E (2002) Environmental surveillance of filamentous fungi in three tertiary care hospitals in Greece. J Hosp Infect 52:185–191

    PubMed  Article  CAS  Google Scholar 

  • Pavlícek A, Hrdá S, Flegr J (1999) Free-Tree—freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol 45:97–99

    Google Scholar 

  • Pitt JI, Hocking AD (1999) Fungi and food spoilage. Aspen, Gaithersburg, pp 375–383

    Google Scholar 

  • Raper KB, Fennel DI (1965) The genus Aspergillus. Williams & Wilkins, Baltimore

    Google Scholar 

  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Allameh A, Kazeroon-Shiri A, Ranjbar-Bahadori S, Mirzahoseini H, Rezzaee MB (2006) A survey on distribution of Aspergillus section Flavi in corn field soils in Iran: population patterns based on aflatoxins, cyclopiazonic acid and sclerotia production. Mycopathologia 161:183–192

    PubMed  Article  CAS  Google Scholar 

  • Razzaghi-Abyaneh M, Yoshinari T, Shams-Ghahfarokhi M, Rezaee MB, Nagasawa H, Sakuda S (2007) Dillapiol and Apiol as specific inhibitors of the biosynthesis of aflatoxin G1 in Aspergillus parasiticus. Biosci Biotechnol Biochem 71:2329–2332

    PubMed  Article  CAS  Google Scholar 

  • Reddy KRN, Reddy CS, Kumar PN, Reddy CS, Muralidharan K (2009) Genetic variability of aflatoxin B1 producing Aspergillus flavus strains isolated from discolored rice grains. World J Microbiol Biotechnol 25:33–39

    Article  CAS  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC (2000) Introduction to food- and airborne fungi, 1st edn. Centraalbureau voor Schimmelcultures, Baarn

    Google Scholar 

  • Sautour M, Dalle F, Olivieri C, Lollivier C, Enderlin E, Salome E, Chovelon I, Vagner O, Sixt N, Fricker-Pop V (2009) A prospective survey of air and surface fungal contamination in medical mycology laboratory at a tertiary care university hospital. Am J Infect Cont 37:189–194

    Article  Google Scholar 

  • Tran-Dinh N, Kennedy I, Bui T, Carter D (2009) Survey of Vietnamese peanuts, corn and soil for the presence of Aspergillus flavus and Aspergillus parasiticus. Mycopathologia 168:257–268

    PubMed  Article  CAS  Google Scholar 

  • VandenBerg MFQ, Verweij PE, Voss A (1999) Epidemiology of nosocomial fungal infections: invasive aspergillosis and the environment. Diagn Microbiol Infect Dis 34:221–227

    Article  Google Scholar 

  • Vesper MJ, Vesper S (2004) It's time to break the mold, 4th Annual ICT virtual conference. Virgo, Phoenix

    Google Scholar 

  • Vonberg RP, Gastmeier P (2006) Nosocomial aspergillosis in outbreak settings. J Hosp Infect 63:246–254

    PubMed  Article  Google Scholar 

  • Warris A, Voss A, Verweij P (2001) Hospital sources of Aspergillus species: new routes of transmission? Rev lberoam Micol 18:156–162

    CAS  Google Scholar 

  • Yabe K, Nakamura H, Ando Y, Terakudo N, Nakajima H, Hamasaki T (1988) Isolation and characterization of Aspergillus parasiticus mutants with impaired aflatoxin production by novel tip culture method. Appl Environ Microbiol 54:2096–2100

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by Tarbiat Modares University. The authors wish to thank Mrs. Razeghi from Mycology Department, Faculty of Medical Sciences of Tarbiat Modares University for her helpful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoomeh Shams-Ghahfarokhi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sepahvand, A., Shams-Ghahfarokhi, M., Allameh, A. et al. A survey on distribution and toxigenicity of Aspergillus flavus from indoor and outdoor hospital environments. Folia Microbiol 56, 527–534 (2011). https://doi.org/10.1007/s12223-011-0078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-011-0078-1

Keywords

  • Aflatoxin
  • Cyclopiazonic Acid
  • Sclerotium Production
  • Czapek Yeast Extract Agar
  • Aspergillus Spore