Folia Microbiologica

, Volume 56, Issue 2, pp 110–115 | Cite as

Effect of recombinant divercin RV41, structural variants and the activators of potassium channels on Listeria monocytogenes EGDe



The effect of recombinant divercin RV41 (DvnRV41) and its structural variants on the K-channel formation was determined. The growth of Listeria monocytogenes EGDe (sensitive phenotype) and its isogenic strain (resistant phenotype) was assessed in the presence of DvnRV41 combined or not with pinacidil, NS1619, cromakalim (as K-channel activators), iberiotoxin and glipizide (as K-channel blockers). The combined action of DvnRV41 and K activators permitted formation of ATP-dependent pores. The combination of DvnRV41 and ATP-dependent pore activator cromakalim inhibited the growth of sensitive strain. The antilisterial activity of structural variants was less important than that of DvnRV41 but their mode of action remained overall similar.


Glipizide Pinacidil Cromakalim Isogenic Strain Iberiotoxin 


Channel modulators








A channel opener





Arbitrary units

Dvn RV41

Recombinant divercin


Lactic acid bacteria


Luria–Bertani (broth)


Minimum inhibitory concentration


Proton motive force


Phosphotransferase system


Tryptic soy broth


TSB + yeast extract



The authors would like to thank J. Baah for improving quality of the manuscript and the French Embassy in Prague for financial support of first author.


  1. Adams M (2003) Nisin in multifactorial food preservation. In: Roller S (ed) Natural Antimicrobials for the Minimal Processing of Foods. CRC Press, Boca Raton, pp 11–33CrossRefGoogle Scholar
  2. van Belkum MJ, Kok J, Venema G, Holo H, Nes IF, Konings WN, Abee T (1991) The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol 173:7934–7941PubMedGoogle Scholar
  3. Bieler S, Silva F, Soto C, Belin D (2006) Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol 188:7049–7061PubMedCrossRefGoogle Scholar
  4. Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, Sahl HG (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327PubMedCrossRefGoogle Scholar
  5. Candia S, Garcia ML, Latorre R (1992) Mode of action of iberiotoxin, a potent blocker of the large conductance Ca2+-activated K+ channel. Biophys J 63:583–590PubMedCrossRefGoogle Scholar
  6. Chen H, Hoover DG (2003) Bacteriocins and their food applications. CRFSFS 2:82–100Google Scholar
  7. Cotter PD, Hill C, Ross RP (2005) Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci 6:61–75PubMedCrossRefGoogle Scholar
  8. Diep D, Skaugen BM, Salehian Z, Holo H, Nes IF (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Nat Acad Sci USA 104:2384–2389PubMedCrossRefGoogle Scholar
  9. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582PubMedCrossRefGoogle Scholar
  10. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106PubMedCrossRefGoogle Scholar
  11. Evgenov OV, Pacher P, Williams W, Evgenov NV, Mabley JG, Cicila J, Sikó ZB, Salzman AL, Szabó C (2003) Parenteral administration of glipizide sodium salt, an inhibitor of adenosine triphosphate-sensitive potassium channels, prolongs short-term survival after severe controlled hemorrhage in rats. Crit Care Med 31:2429–2436PubMedCrossRefGoogle Scholar
  12. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couvé E, de Daruvar A, Dehoux P, Domann F, Domínguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, García-del PF, Garrido P, Gautier L, Goebel W, Gómez-López N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno F, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Pérez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vázquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852PubMedGoogle Scholar
  13. Han X, Xi L, Wang H, Huang X, Ma X, Han Z, Wu P, Ma X, Lu Y, Wang G, Zhou J, Ma D (2008) The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells. Biochem Biophys Res Com 375:205–209PubMedCrossRefGoogle Scholar
  14. Héchard Y, Pelletier C, Cenatiempo Y, Frère J (2001) Analysis of σ(54)-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580PubMedGoogle Scholar
  15. Herranz C, Chen Y, Chung HJ, Cintas LM, Hernández PE, Montville TJ, Chikindas ML (2001) Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl Environ Microbiol 67:1689–1692PubMedCrossRefGoogle Scholar
  16. Ingham A, Ford M, Moore RJ, Tizard M (2003) The bacteriocins piscicolin 126 retains antilisterial in vivo. J Antimicrob Chemother 51:1365–1371PubMedCrossRefGoogle Scholar
  17. Kišidayová S, Lauková A, Jalč D (2009) Comparison of nisin and monensin effects on cilitae and selected bacterial populations in artificial rumen. Folia Microbiol 54:527–532CrossRefGoogle Scholar
  18. Lauritzen I, De Weihe JR, Lazdunski M (1997) The potassium channel opener cromakalim prevents glutamate-induced cell death in hippocampal neurons. J Neuronem 69:1570–1579Google Scholar
  19. Line JE, Svetoch EA, Eruslanov BV, Perelygin VV, Motsevich EV, Mitsevich IP, Levchuk VP, Svetoch OE, Seal BE, Siragusa GR, Stern NJ (2008) Isolation and purification of enterocin E-760 with broad antimicrobial activity against Gram negative and Gram positive bacteria. Antimicrob Agents Chemother 52:1094–1100PubMedCrossRefGoogle Scholar
  20. Littleton JT, Ganetzky B (2000) Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26:35–43PubMedCrossRefGoogle Scholar
  21. Naghmouchi K, Drider D, Hammami R, Fliss I (2008) Effect of antimicrobial peptides divergicin M35 and nisin A on Listeria monocytogenes LSD530 potassium channels. Curr Microbiol 56:609–612PubMedCrossRefGoogle Scholar
  22. Pilet MF, Dousset X, Barré R, Novel G, Desmazeaud M, Piard JC (1995) Evidence for two bacteriocins produced by Carnobacterium divergens V41 and Carnobacterium piscicola V1 isolated from fish and active against Listeria. J Food Prot 58:256–262Google Scholar
  23. Richard C, Drider D, Elmorjani K, Marion D, Prévost H (2004) Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. J Bacteriol 186:4276–4284PubMedCrossRefGoogle Scholar
  24. Richard C, Cañon R, Naghmouchi K, Bertrand D, Prévost H, Drider D (2006) Evidence on correlation between number of disulfide bridge and toxicity of class IIa bacteriocins. Food Microbiol 23(2):175–183PubMedCrossRefGoogle Scholar
  25. Řiháková J, Petit VW, Demnerová K, Prévost H, Rebuffat S, Drider D (2009) Insights into structure–activity relationships in the C-terminal region of divercin V41, a class IIa bacteriocin with high-level antilisterial activity. Appl Environ Microbiol 75:1811–1819PubMedCrossRefGoogle Scholar
  26. Řiháková J, Cappelier JM, Hue I, Demnerová K, Fédérighi M, Prévost H, Drider D (2010) In vivo activity of recombinant divercin V41 and its structural variants against Listeria monocytogenes. Antimicrob Agents Chemother 54:563–564PubMedCrossRefGoogle Scholar
  27. Rodríguez JM, Martinez MI, Kok J (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 42:91–121PubMedCrossRefGoogle Scholar
  28. Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328:1168–1172PubMedCrossRefGoogle Scholar
  29. Stern NJ, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Pokhilenko VD, Levchuk VP, Svetoch OE, Seal BS (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Chemother 50:3111–3116PubMedCrossRefGoogle Scholar
  30. Suzuki M, Yamamoto T, Kawai Y, Inoue N, Yamazaki K (2005) Mode of action of piscicocin CS526 produced by Carnobacterium piscicola CS526. J Appl Microbiol 98:1146–1151PubMedCrossRefGoogle Scholar
  31. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40:722–756PubMedGoogle Scholar
  32. Thorne GD, Conforti L, Paul JR (2002) Hypoxic vasorelaxation inhibition by organ culture correlates with loss of K+ channels but not Ca2+ channels. Am J Physiol Heart Circ Physiol 283:H247–H253PubMedGoogle Scholar
  33. Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LMT, de Gombossy Melo Franco BD, Vaz-Velho M, Drider D (2010) Characterization of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 7:869–879CrossRefGoogle Scholar
  34. Wachsman MB, Castilla V, de Ruiz Holgado AP, de Torres RA, Sesma F, Coto CA (2003) Enterocin CLR35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir Res 58:17–24PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2011

Authors and Affiliations

  1. 1.Food Science and Engineering, La ChantrerieNantes-Atlantic National College of Veterinary MedicineNantes Cedex 03France
  2. 2.Department of Biochemistry and MicrobiologyInstitute of Chemical TechnologyPrague 6Czech Republic

Personalised recommendations