Skip to main content

Advertisement

Log in

PCR screening and sequence analysis of iol clusters in Lactobacillus casei strains isolated from koumiss

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The iol cluster (consisting of genes involved in myo-inositol utilization) was investigated in Lactobacillus casei strains isolated from koumiss. Ten strains were tested for the presence of iol cluster by PCR screening; three strains encoded this cluster. Full-sequencing procedure was conducted; the iol cluster was identical to that of L. casei BL23 (GenBank access. no. FM177140) except for an upstream transposase. The iol cluster is not a common feature for L. casei strains isolated from koumiss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

mIol:

myo-inositol

LAB:

lactic acid bacteria

MRS:

de Man-Rogosa-Sharpe (broth)

References

  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl.Acids Res.25, 3389–3402 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Besemer J., Lomsadze A., Borodovsky M.: GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucl.Acids Res.29, 2607–2618 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bordenstein S.R., Reznikoff W.S.: Mobile DNA in obligate intracellular bacteria. Nat.Rev.Microbiol.3, 688–699 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Brown L.D., Cheung A., Harwood J.E., Battaglia F.C.: Inositol and mannose utilization rates in term and late-preterm infants exceed nutritional intakes. J.Nutr.139, 1648–1652 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Ewing B., Green P.: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res.8, 186–194 (1998).

    CAS  PubMed  Google Scholar 

  • Fujita Y., Shindo K., Miwa Y., Yoshida K.: Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression in Escherichia coli. Gene108, 121–125 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Galbraith M.P., Feng S.F., Borneman J., Triplett E.W., De Bruijn F.J., Rossbach S.: A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiology (Reading, England)144, 2915–2924 (1998).

    Article  CAS  Google Scholar 

  • Heller K.J.: Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am.J.Clin.Nutr.73, 374S–379S (2001).

    CAS  PubMed  Google Scholar 

  • Hasisurong, Amuguleng, Manglai: Koumiss and its value in medicine. Zhongguo Zhong Yao Za Zhi28, 11–14 (2003).

    Google Scholar 

  • Holub B.J.: Metabolism and function of myo-inositol and inositol phospholipids. Ann.Rev.Nutr.6, 563–597 (1986).

    Article  CAS  Google Scholar 

  • Ishii S., Kikuchi M., Muramatsu K., Takao S.: Identification of compounds causing symbiotic growth of Lactobacillus paracasei subsp. tolerans and Kluyveromyces marxianus var. lactis (Chigo, Inner Mongolia, China). Anim.Sci.J.70, 81–89 (1999).

    CAS  Google Scholar 

  • Jauniaux E., Hempstock J., Teng C., Battaglia F.C., Burton G.J.: Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment. J.Clin. Endocrinol.Metab.90, 1171–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Jiang G., Krishnan A.H., Kim Y.W., Wacek T.J., Krishnan H.B.: A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.]Merr.). J.Bacteriol.183, 2595–2604 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Krings E., Krumbach K., Bathe B., Kelle R., Wendisch V.F., Sahm H., Eggeling L.: Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. J.Bacteriol. 188, 8054–8061 (2006).

    Google Scholar 

  • Kurtz S., Choudhuri J.V., Ohlebusch E., Schleiermacher C., Stoye J., Giegerich R.: REPuter: the manifold applications of repeat analysis on a genomic scale. Nucl.Acids Res.29, 4633–4642 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Loewus F.A., Loewus M.W.: myo-Inositol: its biosynthesis and metabolism. Ann.Rev.Plant Physiol.34, 137–161 (1983).

    Article  CAS  Google Scholar 

  • Molenaar D., Bringel F., Schuren F.H., De Vos W.M., Siezen R.J., Kleerebezem M.: Exploring Lactobacillus plantarum genome diversity by using microarrays. J.Bacteriol.187, 6119–6127 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Molina Y., Ramos S.E., Douglass T., Klig L.S.: Inositol synthesis and catabolism in Cryptococcus neoformans, pp. 1657–1667 in Yeast, Vol. 15. Chichester, England 1999.

    CAS  Google Scholar 

  • Parvez S., Malik K.A., Ah Kang S., Kim H.Y.: Probiotics and their fermented food products are beneficial for health. J.Appl.Microbiol.100, 1171–1185 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Reid G.: The importance of guidelines in the development and application of probiotics. Curr.Pharm.Des.11, 11–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  • de Vos W.M., Hugenholtz J.: Engineering metabolic highways in lactococci and other lactic acid bacteria. Trends Biotechnol.22, 72–79 (2004).

    Article  PubMed  Google Scholar 

  • Watanabe K., Fujimoto J., Sasamoto M., Dugersuren J., Tumursuh T., Demberel S.: Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J.Microbiol.Biotechnol.24, 1313–1325 (2008).

    Article  CAS  Google Scholar 

  • Wang J., Chen X., Liy W., Yang M., Zhang H.: Identification of Lactobacillus from koumiss by conventional and molecular methods. Eur.Food Res.Technol.227, 1555–1561 (2008).

    Article  CAS  Google Scholar 

  • Yebra M.J., Zuniga M., Beaufils S., Perez-martinez G., Deutscher J., Monedero V.: Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl.Environ.Microbiol.73, 3850–3858 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K., Yamaguchi M., Morinaga T., Kinehara M., Ikeuchi M., Ashida H., Fujita Y.: myo-Inositol catabolism in Bacillus subtilis. J.Biol.Chem.283, 10415–10424 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Zhang W., Yun Y., Sun T., Menghe B., Zhang H.: Isolation and identification of dominant microorganisms involved in naturally fermented goat milk in Haixi region of Qinghai, China. Ann.Microbiol.58, 213–217 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Sun, Z., Sun, T. et al. PCR screening and sequence analysis of iol clusters in Lactobacillus casei strains isolated from koumiss. Folia Microbiol 55, 603–606 (2010). https://doi.org/10.1007/s12223-010-0097-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0097-3

Keywords

Navigation