Skip to main content
Log in

Stress proteins in the cytoplasmic membrane fraction of Bacillus subtilis

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Stress proteomes of the cytoplasmic membrane fraction of Bacillus subtilis trp C2-exposed to acid pH and ethanol were characterized. Although these stress factors impair the cell function in a specific manner, they share the ability to denature proteins. Therefore, specific and general stress proteins in the membranes were investigated. Both ethanol (3 %) and pH 5.0 increase the doubling time from 17 to 25 min. Isolated cytoplasmic membranes were subjected to an optimized 2D PAGE analysis which permitted the separation and analysis of ≈450 distinct protein spots. Two alternative methods of protein detection were compared, i.e. silver staining and 35S-l-methionine pulse labeling; the stress induced proteins were identified by MALDI-TOF MS. After ethanol stress, five proteins were increased, viz. YdaP, Ctc, YfhM, YjcH and YwaC. Acid stress proteins were AcoB, YkwC, SodA, YjcH and YwaC. Proteins YjcH and YwaC were increased after ethanol as well as acid pH treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHAPS:

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

DTT:

1,4-dithiothreitol

IPG:

immobilized pH gradient

MALDI:

matrix-assisted laser desorption/ionization

M :

molar mass

MS:

mass spectrometry

PAGE:

polyacrylamide gel electrophoresis

PMSF:

phenylmethanesulfonyl fluoride

SDS:

sodium dodecyl sulfate

TOF:

time-of-flight

µ:

growth rate

References

  • Ali N.O., Bignon J., Rapoport G., Debarbouille M.: Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. J.Bacteriol. 183, 2497–2504 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Antelmann H., Scharf C., Hecker M.: Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J.Bacteriol.182, 4478–4490 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Betz C., Schlenstedt G., Bailer S.M.: Asr1p, a novel yeast ring/PHD finger protein, signals alcohol stress to the nucleus. J.Biol. Chem.279, 28174–28181 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Bisschop A., Konings W.N.: Reconstitution of reduced nicotinamide adenine dinucleotide oxidase activity with menadione in membrane vesicles from the menaquinone-deficient Bacillus subtilis AroD. Relation between electron transfer and active transport. Eur.J.Biochem.67, 357–365 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Cao M., Kobel P.A., Morshedi M.M., Wu M.F., Paddon C., Helmann J.D.: Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/ macroarray analysis (ROMA), and transcriptional profiling approaches. J.Mol.Biol.316, 443–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  • D’Amore T., Panchal C.J., Russel I., Stewart G.G.: A study of ethanol tolerance in yeast. Crit.Rev. Biotechnol.9, 287–304 (1990).

    Article  PubMed  Google Scholar 

  • Halada P., Man P., Grebeňová D., Hrkal Z., Havlíček V.: Identification of HL60 proteins affected by 5-aminolevulinic acid-based photodynamic therapy using mass spectrometric approach. Collect.Czech.Chem.Commun.66, 1720–1728 (2001).

    Article  CAS  Google Scholar 

  • Gaidenko T.A., Price C.W.: General stress transcription factor σB and sporulation transcription factor σH each contribute to survival of Bacillus subtilis under extreme growth conditions. J.Bacteriol.180, 3730–3733 (1998).

    CAS  PubMed  Google Scholar 

  • Gerner C., Vejda S., Gelbmann D., Bayer E., Gotzmann J., Schulte-hermann R., Mikulits W.: Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling. Mol. Cell Proteomics1, 528–537 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gharahdaghi F., Weinberg C.R., Meagher D.A., Imai B.S., Mische S.M.: Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis20, 601–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Grundy F.J., Waters D.A., Allen S.H., Henkin T.M.: Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J.Bacteriol.175, 7348–7355 (1993).

    CAS  PubMed  Google Scholar 

  • Hirose I., Sano K., Shioda I., Kumano M., Nakamura K., Yamane K.: Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology146, 65–75 (2000).

    CAS  PubMed  Google Scholar 

  • Huang X., Gaballa A., Cao M., Helmann J.D.: Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, sigma W. Mol.Microbiol.31, 361–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Inaoka T., Matsumura Y., Tsuchido T.: Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis. J.Bacteriol.180, 3697–3703 (1998).

    CAS  PubMed  Google Scholar 

  • Inaoka T., Matsumura Y., Tsuchido T.: SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis. J.Bacteriol.181, 1939–1943 (1999).

    CAS  PubMed  Google Scholar 

  • Jeong K.C., Hung K.F., Baumler D.J., Byrd J.J., Kaspar C.W.: Acid stress damage of DNA is prevented by Dps binding in Escherichia coli O157:H7. BMC Microbiol.15, 181 (2008).

    Article  Google Scholar 

  • Kaneda T.: Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol.Rev.55, 288–302(1991).

    CAS  PubMed  Google Scholar 

  • Malhotra L., Singh B.: Ethanol-induced changes in glycolipids of Saccharomyces cerevisiae. Appl.Biochem.Biotechnol.128, 205–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Marza E., Camougrand N., Manon S.: Bax expression protects yeast plasma membrane against ethanol-induced permeabilization. FEBS Lett.521, 47–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nanamiya H., Kasai K., Nozawa A., Yun C.S., Narisawa T., Murakami K., Natori Y., Kawamura F., Tozawa Y.: Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Mol.Microbiol.67, 291–304 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Periago P.M., Van Schaik W., Abee T., Wouters J.A.: Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl.Environ.Microbiol.68, 3486–3495 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Petersohn A., Bernhardt J., Gerth U., Höper D., Koburger T., Völker U., Hecker M.: Identification of sigma(B)-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotide hybridization. J.Bacteriol.181,5718–5724 (1999).

    CAS  PubMed  Google Scholar 

  • Petersohn A., Brigulla M., Haas S., Hoheisel J.D., Völker U., Hecker M.: Global analysis of the general stress response of Bacillus subtilis. J.Bacteriol.183, 5617–5631 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Poolman B., Spitzer J.J., Wood J.M.: Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim.Biophys.Acta1666, 88–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Presser K.A., Ratkowsky D.A., Ross T.: Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl.Environ.Microbiol.63, 2355–2360 (1997).

    CAS  PubMed  Google Scholar 

  • Price C.W.: Protective function and regulation of the general stress response of Bacillus subtilis and related Gram-positive bacteria, pp. 179–197 in G. Storz, R. Hengge-Aronis (Eds): Bacterial Stress Responses. ASM Press, Washington (DC) 2000.

    Google Scholar 

  • Price C.W.: General stress response, pp. 369–384 in A.L. Sonenshein, J.A. Hoch, R. Losick (Eds): Bacillus subtilis and its closest relatives. From genes to cells. ASM Press, Washington (DC) 2002.

    Google Scholar 

  • Price C.W., Fawcett P., Ceremonie H., Su N., Murphy C.K., Youngman P.: Genome-wide analysis of the general stress response in Bacillus subtilis. Mol.Microbiol.41, 757–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Schmalisch M., Langbein I., Stülke J.: The general stress protein Ctc of Bacillus subtilis is a ribosomal protein. J.Mol.Microbiol.Biotechnol.4, 495–501 (2002).

    CAS  PubMed  Google Scholar 

  • Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C.: Measurement using bicinchoninic acid; elimination of interfering substances. Analyt.Biochem.180, 136–139 (1985).

    Google Scholar 

  • Sonenshein A.L.: Bacterial sporulation: a response to environmental signals, pp. 199–215 in G. Storz, R. Hengge-Aronis (Eds): Bacterial Stress Responses. ASM Press, Washington (DC) 2000.

    Google Scholar 

  • Takahashi T., Shimoi H., Ito K.: Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol.Genet.Genomics265, 1112–1119 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Thackray P.D., Moir A.: SigM, an extracytoplasmic function sigma factor of Bacillus subtilis, is activated in response to cell wall antibiotics, ethanol, heat, acid, and superoxide stress. J.Bacteriol.185, 3491–3498 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Völker U., Engelmann S., Maul B., Riethdorf S., VÖLKER A., Schmid R., Mach H., Hecker M.: Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology140, 741–752 (1994).

    Article  PubMed  Google Scholar 

  • Völker U., Maul B., Hecker M.: Expression of the σB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J.Bacteriol.181, 3942–3948 (1999).

    PubMed  Google Scholar 

  • Wipat A., Harwood C.R.: The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol.Ecol.28, 1–9 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Petráčková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petráčková, D., Šemberová, L., Halada, P. et al. Stress proteins in the cytoplasmic membrane fraction of Bacillus subtilis . Folia Microbiol 55, 427–434 (2010). https://doi.org/10.1007/s12223-010-0072-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0072-z

Keywords

Navigation