Skip to main content

Advertisement

Log in

Decisive role of lipopolysaccharide in activating nitric oxide and cytokine production by the probiotic Escherichia coli strain Nissle 1917

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Effects of Gram-negative probiotic E. coli strain Nissle 1917 (EcN) on the production of nitric oxide (NO) and cytokines were determined in cultures of resident peritoneal cells of rats. The cells (2 × 106/mL) were cultured for 24 h in the presence of live EcN suspension (EcN-Susp), bacteria-free supernatant of this suspension (Sup-EcN), and LPS of EcN origin (LPS-EcN). The biosynthesis of NO was substantially enhanced using live bacteria counts as low as 103/mL applied in the form of EcN-Susp. The same NO-enhancing effect was produced by the correspondingly diluted Sup-EcN. It was found that Sup-EcN contained relatively high amounts of LPS. Administration of the LPS-EcN mimicked the high NO-augmenting activities of both Sup-EcN and EcN-Susp. However, the activity of LPS-EcN was significantly less pronounced than were the activities of Sup-EcN and EcN-Susp containing identical amounts of LPS. The NOstimulatory effects of the EcN preparations were completely inhibited by polymyxin B. All LPS-EcN and correspondingly diluted Sup-EcN and EcN-Susp stimulated the secretion of cytokines TNF-α, IL-1β, IL-6, IL-10 and VEGF. Also these effects were abrogated by polymyxin B. In contrast to the effects on NO production, the cytokine-stimulatory effects were significantly less pronounced after the exposure of the cells to Sup-EcN and EcN-Susp than to the identical amounts of LPS-EcN. It may be concluded that the in vitro stimulatory effects of EcN on NO and cytokine production are mediated by LPS. It is suggested that the immunostimulatory activity of LPS is modulated by EcN-derived factor(s), the nature of which remains to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EcN:

Escherichia coli strain Nissle 1917

EcN-Susp:

suspension of live EcN

iNOS:

inducible nitric oxide synthase

LPS:

lipopolysaccharide

LPS-EcN:

LPS isolated from

PBS:

phosphate-buffered saline

PC:

peritoneal cells

Sup-EcN:

bacteria-free supernatant prepared from EcN-Susp

References

  • Altenhoefer A., Oswald S., Sonnenborn U., Enders C., Schulze J., Hacker J., Oelschlaeger T.A.: The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol.Med.Microbiol.40, 223–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C., Röllinghof M., Vodovotz Y., Xie Q.W., Nathan C.: Regulation of inducible nitric oxide synthase in macrophages by cytokines and microbial products, pp. 37–54 in Immunotherapy of Infections (K.N. Masihi, Ed.). Marcel Dekker, New York 1994.

    Google Scholar 

  • Bogdan C., Vodovotz Y., Nathan C.: Macrophage deactivation by interleukin 10. J.Exp.Med.174, 1549–1555 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Chen B.C., Lin W.W.: Potentiation of lipopolysaccharide-induced IL-6 release by uridine triphosphate in macrophages: cross-interaction with cyclooxygenase-2-dependent prostaglandin E2 production. J.Biomed.Sci.6, 425–432 (1999).

    CAS  PubMed  Google Scholar 

  • Chen C.-C., Wang J.-K.: p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol.Pharmacol.55, 481–488 (1999).

    CAS  PubMed  Google Scholar 

  • Connelly L., Palacios-Callender M., Ameixa C., Moncada S., Hobbs A.J.: Biphasic regulation of NF-κB activity underlies the pro- and anti-inflammatory actions of nitric oxide. J.Immunol.166, 3873–3881 (2001).

    CAS  PubMed  Google Scholar 

  • Cross M.L., Ganner A., Teilab D., Fray L.M.: Patterns of cytokine induction by Gram-positive and Gram-negative probiotic bacteria. FEMS Immunol.Med.Microbiol.42, 173–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Deakin A.M., Payne A.N., Whittle B.J., Moncada S.: The modulation of IL-6 and TNF-α release by nitric oxide following stimulation of J774 cells with LPS and IFN-γ. Cytokine7, 406–416 (1995).

    Article  Google Scholar 

  • Ding A.H., Nathan C.F., Stuehr D.J.: Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J.Immunol.141, 2407–2412 (1988).

    CAS  PubMed  Google Scholar 

  • Duhé R.J., Evans G.A., Erwin R.A., Kirken R.A., Cox G.W., Farrar W.L.: Nitric oxide and thiol redox regulation of Janus kinase activity. Proc.Nat.Acad.Sci.USA95, 126–131 (1998).

    Article  PubMed  Google Scholar 

  • Fiorucci S., Santucci L., Cirino G., Mencarelli A., Familiari L., Del Soldato P., Morelli A.: IL-1β converting enzyme is a target for nitric oxide-releasing aspirin: new insights in the anti-inflammatory mechanism of nitric oxide-releasing nonsteroidal anti-inflammatory drugs. J.Immunol.165, 5245–5254 (2000).

    CAS  PubMed  Google Scholar 

  • Förstermann U., Kleinert H.: Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg’s Arch.Pharmacol.352, 351–364 (1995).

    Article  Google Scholar 

  • Gaillard T., Mülsch A., Klein H., Decker K.: Regulation by prostaglandin E2 of cytokine-elicited nitric oxide synthesis in rat liver macrophages. Biol.Chem.Hoppe-Seyler373, 897–902 (1992).

    CAS  PubMed  Google Scholar 

  • Gao J.J., Zuvanich E.G., Xue Q., Horn D.L., Silverstein R., Morrison D.C.: Bacterial DNA and LPS act in synergy in inducing nitric oxide production in RAW 264.7 macrophages. J.Immunol.163, 4095–4099 (1999).

    CAS  PubMed  Google Scholar 

  • Grozdanov L., Raasch C., Schulze J., Sonnenborn U., Gottschalk G., Hacker J., Dobrindt U.: Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J.Bacteriol.186, 5432–5441 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Grozdanov L., Zähringer U., Blum-Oehler G., Brade L., Henne A., Knirel Y.A., Schombel U., Schulze J., Sonnenborn U., Gottschalk G., Hacker J., Rietschel E.T., Dobrindt U.: A single nucleotide exchange in the wzy gene is responsible for the semirough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J.Bacteriol.184, 5912–5925 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hafez M., Hayes K., Goldrick M., Warhurst G., Grencis R., Roberts I.S.: The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infect.Immun.77, 2995–3003 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Helwig U., Lammers K.M., Rizzello F., Brigidi P., Rohleder V., Caramelli E., Gionchetti P., Schrezenmeir J., Foelsch U.R., Schreiber S., Campieri M.: Lactobacilli, bifidobacteria and E. coli Nissle induce pro- and anti-inflammatory cytokines in peripheral blood mononuclear cells. World J.Gastroenterol.12, 5978–5986 (2006).

    CAS  PubMed  Google Scholar 

  • Henker J., Laass M., Blokhin B.M., Bolbot Y.K., Maydannik V.G., Elze M., Wolff C., Schulze J.: The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhea in infants and toddlers. Eur.J.Pediatr.166, 311–318 (2007).

    Article  PubMed  Google Scholar 

  • Hockertz S.: Immunomodulating effect of killed, apathogenic Escherichia coli, strain Nissle 1917, on the macrophage system. Arzneimittelforschung41, 1108–1112 (1991).

    CAS  PubMed  Google Scholar 

  • Ivec M., Botić T., Koren S., Jakobsen M., Weingartl H., Cencic A.: Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus. Antiviral Res.75, 266–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kallmann B.A., Malzkorn R., Kolb H.: Exogenous nitric oxide modulates cytokine production in human leukocytes. Life Sci.65, 1787–1794 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kamada N., Maeda K., Inoue N., Hisamatsu T., Okamoto S., Hong K.S., Yamada T., Watanabe N., Tsuchimoto K., Ogata H., Hibi T.: Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Infect.Immun.76, 214–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kruis W., Fric P., Pokrotnieks J., Lukás M., Fixa B., Kascák M., Kamm M.A., Weismueller J., Beglinger C., Stolte M., Wolff C., Schulze J.: Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut53, 1617–1623 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lammers K.M., Helwig U., Swennen E., Rizzello F., Venturi A., Caramelli E., Kamm M.A., Brigidi P., Gionchetti P., Campieri M.: Effect of probiotic strains on interleukin 8 production by HT29/19A cells. Am.J.Gastroenterol.97, 1182–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lander H.M.: An essential role for free radicals and derived species in signal transduction. FASEB J.11, 118–124 (1997).

    CAS  PubMed  Google Scholar 

  • Malchow H.A.: Crohn’s disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn’s disease? J.Clin.Gastroenterol.25, 653–658 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Marcinkiewicz J., Grabowsky A., Chain B.: Nitric oxide up-regulates the release of inflammatory mediators by mouse macrophages. Eur.J.Immunol.25, 947–951 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Mercenier A., Pavan S., Pot B.: Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr.Pharm.Des.9, 175–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Mondel M., Schroeder B.O., Zimmermann K., Huber H., Nuding S., Beisner J., Fellermann K., Stange E.F., Wehkamp J.: Probiotic E. coli treatment mediates antimicrobial human β-defensin synthesis and fecal excretion in humans. Mucosal Immunol.2, 166–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Nissle A.: Weiters über Grundlagen und Praxis der Mutaflorbehandlung. Deutsch.Med.Wochenschr.44, 1809–1813 (1925).

    Article  Google Scholar 

  • Obermeier F., Gros, V., Schölmeric J., Falk W.: Interleukin-1 production by mouse macrophages is regulated in a feedback fashion by nitric oxide. J.Leukoc.Biol.66, 829–836 (1999).

    CAS  PubMed  Google Scholar 

  • Otte J.-M., Podolsky D.K.: Functional modulation of enterocytes by Gram-positive and Gram-negative microorganisms. Am.J.Physiol. Gastrointest.Liver Physiol.286, G613–G626 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ouadrhiri Y., Sibille Y., Tulkens P.M.: Modulation of intracellular growth of Listeria monocytogenes in human enterocyte Caco-2 cells by interferon-γ and interleukin-6: role of nitric oxide and cooperation with antibiotics. J.Infect.Dis.180, 1195–1204 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Paoliello-Paschoalato A.B., Oliveira S.H., Cunha F.Q.: Interleukin 4 induces the expression of inducible nitric oxide synthase in eosinophils. Cytokine30, 116–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Patzer S.I., Baquero M.R., Bravo D., Moreno F., Hantke K.: The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology149, 2557–2570 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Peraldi P., Frodin M., Barnier J.V., Calleja V., Sciemeca J.C., Filloux C., Calothy G., van Obberghen E.: Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP. FEBS Lett.357, 290–296 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Rogerio F., Teixeira S.A., Junior H.J., Maria C.C., Vieira A.S., De Rezende A.C., Pereira G.A., Muscara M.N., Langone F.: mRNA and protein expression and activities of nitric oxide synthases in the lumbar spinal cord of neonatal rats after sciatic nerve transection and melatonin administration. Neurosci.Lett.407, 182–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ryu Y.H., Baik J.E., Yang J.S., Kang S.S., Im J., Yun C.H., Kim D.W., Lee K., Chung D.K., Ju H.R., Han S.H.: Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Internat.Immunopharmacol.9, 127–133 (2009).

    Article  CAS  Google Scholar 

  • Salkowski C.A., Detore G., Mcnally R., van Rooijen N., Vogel S.N.: Regulation of inducible nitric oxide synthase messenger RNA expression and nitric oxide production by lipopolysaccharide in vivo. J.Immunol.158, 905–912 (1997).

    CAS  PubMed  Google Scholar 

  • Schlee M., Wehkamp J., Altenhoefer A., Oelschlaeger T.A., Stange E.F., Fellermann K.: Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect.Immun.75, 2399–2407 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Schultz M., Strauch U.G., Linde H.J., Watzl S., Obermeier F., Göttl C., Dunger N., Grunwald N., Schölmerich J., Rath H.C.: Preventive effects of Escherichia coli strain Nissle 1917 on acute and chronic intestinal inflammation in two different murine models of colitis. Clin.Diagn.Lab.Immunol.11, 372–378 (2004).

    PubMed  Google Scholar 

  • Sirois J., Ménard G., Moses A.S., Bissonnette E.Y.: Importance of histamine in the cytokine network in the lung through H2 and H3 receptors: stimulation of IL-10 production. J.Immunol.164, 2964–2970 (2000).

    CAS  PubMed  Google Scholar 

  • Sobko T., Huang L., Midtvedt T., Norin E., Gustafsson L.E., Norman M., Jansson E.A., Lundberg J.O.: Generation of NO by probiotic bacteria in the gastrointestinal tract. Free Radic.Biol.Med.41, 985–991 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Stuehr D.J., Marletta M.A.: Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines or interferon-γ. J.Immunol.139, 518–525 (1987).

    CAS  PubMed  Google Scholar 

  • Sturm A., Rilling K., Baumgart D.C., Gargas K., Abou-Ghazalé T., Raupach B., Eckert J., Schumann R.R., Enders C., Sonnenborn U., Wiedenmann B., Dignass A.U.: Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling. Infect.Immun.73, 1452–1465 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tromm A., Niewerth U., Khoury M., Baestlein E., Wilhelms G., Schulze J., Stolte M.: The probiotic E. coli strain Nissle 1917 for the treatment of collagenous colitis: first results of an open-label trial. Z.Gastroenterol.42, 365–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ukena S.N., Westendorf A.M., Hansen W., Rohde M., Geffers R., Coldewey S., Suerbaum S., Buer J., Gunzer F.: The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC Med.Genet.6, 43 (2005).

    Article  PubMed  Google Scholar 

  • Ukena S.N., Singh A., Dringenberg U., Engelhardt R., Seidler U., Hansen W., Bleich A., Bruder D., Franzke A., Rogler G., Suerbaum S., Buer J., Gunzer F., Westendorf A.M.: Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PloS One2, e1308 (2007).

    Article  PubMed  Google Scholar 

  • Wang S., Yan L., Wesley R.A., Danner R.L.: Nitric oxide increases tumor necrosis factor production in differentiated U937 cells by decreasing cyclic AMP. J.Biol.Chem.272, 5959–5965 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Westphal O., Luderitz O., Bister F.: Über die Extraktion von Bakterien mit Phenol/Wasser. Z.Naturforsch.7, 148–155 (1952).

    Google Scholar 

  • Xie Q.-W.: A novel lipopolysaccharide-response element contributes to induction of nitric oxide synthase. J.Biol.Chem.272, 14867–14872 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Yang W.W., Krukoff T.L.: Nitric oxide regulates body temperature, neuronal activation and interleukin-1β gene expression in the hypothalamic paraventricular nucleus in response to immune stress. Neuropharmacology39, 2075–2089 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zídek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zídek, Z., Kmoníčková, E., Kostecká, P. et al. Decisive role of lipopolysaccharide in activating nitric oxide and cytokine production by the probiotic Escherichia coli strain Nissle 1917. Folia Microbiol 55, 181–189 (2010). https://doi.org/10.1007/s12223-010-0027-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0027-4

Keywords

Navigation