Skip to main content
Log in

Mutants of Candida albicans hypersensitive to calcofluor white display susceptibility to antifungal drugs

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

An increased infection incidence of Candida albicans (most common human fungal pathogen) contributes to the need of further functional genetic studies and development of new antifungal drugs. We developed a method to create mutants of C. albicans using an antisense cDNA library to interfere with gene expression, followed by screening for hypersensitivity to Calcofluor White (CFW) and the antifungal drugs caspofungin and itraconazole. Mutants with these properties have with a high probability defects in cell-wall integrity. Fifty out of 200 transformant colonies analyzed (25 %) showed hypersensitivity to CFW compared with the parental strain C. albicans CAI-4. Most of those CFW-hypersensitive mutants further displayed the susceptibility to antifungal drugs itraconazole and caspofungin using microbroth dilution method M27-A and an agar-diffusion test. The mutants obtained through this procedure could provide a potential model for screening antifungal pro-drugs which show weak action when standard C. albicans strain is used and may also aid in further identifying genes involved in cell integrity. In addition, we describe the effect of varying several parameters in electroporation transformation, including treatment with lithium acetate, upon the efficiency of transformation in C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angiolella L., Micocci M.M., D’ALESSIO S., Girolamo A., Maras B., Cassone A.: Identification of major glucan-associated cell wall proteins of Candida albicans and their role in fluconazole resistance. Antimicrob.Agents Chemother.46, 1688–1694 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Balashov S.V., Park S., Perlin D.S.: Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob.Agents Chemother.50, 2058–2063 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Boorsma A., De Nobel H., Ter Riet B., Bargmann B., Brul S., Hellingwerf K.J., Klis F.M.: Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast21, 413–427 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekar P.H., Sobel J.O.: Micafungin: a new echinocandin. Clin.Infect.Dis.42, 1171–1178 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Damveld R.A., Vankuyk P.A., Arentshorst M., Klis F.M., Van Den Hondel C.A., Ram A.F.: Expression of agsA, one of five 1,3-α-d-glucan synthase-encoding genes in Aspergillus niger, is induced in response to cell wall stress. Fungal Genet.Biol.42, 165–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  • De Backer M.D., Maes D., Vandoninck S., Logghe M., Contreras R., Luyten W.H.: Transformation of Candida albicans by electroporation. Yeast15, 1609–1618 (1999).

    Article  PubMed  Google Scholar 

  • De Backer M.D., Nelissen B., Logghe M., Viaene J., Loonen I., Vandoninck S., De Hoogt R., Dewaele S., Simons F.A., Verhasselt P., Vanhoof G., Contreras R., Luyten W.H.: An antisense-based functional genomics approach for identification of genes critical growth of Candida albicans. Nat.Biotechnol.19, 235–241 (2001).

    Article  PubMed  Google Scholar 

  • Herreros E., Garcia-saez M.I., Nombela C., Sanchez M.: A reorganized Candida albicans DNA sequence promoting homologous non-integrative genetic transformation. Mol.Microbiol.6, 3567–3574 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Hill T.W., Loprete D.M., Momany M., Ha Y., Harsch L.M., Livesay J.A., Mirchandani A., Murdock J.J., Vaughan M.J., Watt. M.B.: Isolation of cell wall mutants in Aspergillus nidulans by screening for hypersensitivity to Calcofluor White. Mycologia98, 400–410 (2006).

    Article  Google Scholar 

  • Kapteyn J.C., Van Den Ende H., Klis F.M.: The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim. Biophys.Acta1426, 373–383 (1999).

    CAS  PubMed  Google Scholar 

  • Lussier M., White A.M., Sheraton J., Di Paolo T., Treadwell J., Southard S.B., Horenstein C.I., Chen-weiner J., Ram A.F.J., Kapteyn J.C., Roemer T.W., Vo D.H., Bondoc D.C., Hall J., Zhong W.W., Sdicu A.M., Davies J., Klis F.M., Robbins P.W., Bussey H.: Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics147, 435–450 (1997).

    CAS  PubMed  Google Scholar 

  • Maeda H., Ishida N.: Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J.Biochem.62, 276–278 (1967).

    CAS  PubMed  Google Scholar 

  • Marr K.A., Rustad T.R., Rex J.H., White T.C.: The trailing end point phenotype in antifungal susceptibility testing is pH dependent. Antimicrob.Agents Chemother.43, 1383–1386 (1999).

    CAS  PubMed  Google Scholar 

  • Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W.A., Diaquin M., Popolo L., Hartland R.P., Latgé J.P.: Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J.Biol.Chem.275, 14882–14889 (2000).

    Article  CAS  PubMed  Google Scholar 

  • NCCLS (National Committee for Clinical Laboratory Standards): Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A. NCCLS, Wayne (PA, USA) 1997.

    Google Scholar 

  • Noble S.M., Johnson A.D.: Genetics of Candida albicans, a diploid human fungal pathogen. Ann.Rev.Genet.41, 193–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Oliver S.: Redundancy reveals drugs in action. Nat.Genet.21, 245–246 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Onishi J., Meinz M., Thompson J., Curotto J., Dreikorn S., Rosenbach M., Douglas C., Abruzzo G., Flattery A., Kong L., Cabello A., Vicente F., Pelaez F., Diez M.T., Martin I., Bills G., Giacobbe R., Dombrowski A., Schwartz R., Morris S., Harris G., Tsipouras A., Wilson K., Kurtz M.B.: Discovery of novel antifungal (1,3)-β-d-glucan synthase inhibitors. Antimicrobial.Agents Chemother.44, 368–377 (2000).

    Article  CAS  Google Scholar 

  • Orłowski J., Machula K., Janik A., Zdebska E., Palamarczyk G.: Dissecting the role of dolichol in cell wall assembly in the yeast mutants impaired in early glycosylation reactions. Yeast24, 239–252 (2007).

    Article  PubMed  Google Scholar 

  • Pardini G., De Groot P.W., Coste A.T., Karababa M., Klis F.M., De Koster C.G., Sanglard D.: The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans. J.Biol.Chem.281, 40399–40411 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Pfaller M.A., Diekema D.J.: Epidemiology of invasive candidiasis: a persistent public health problem. Clin.Microbiol.Rev.20, 133–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Plaine A., Walker L., Da Costa G., Mora-montes H.M., Mckinnon A., Gow N.A., Gaillardin C., Munro C.A., Richard M.L.: Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet.Biol.45, 1404–1414 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Popolo L., Gilardelli D., Bonfante P., Vai M.: Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1δ mutant of Saccharomyces cerevisiae. J.Bacteriol.179, 463–469 (1997).

    CAS  PubMed  Google Scholar 

  • Ram A.F., Klis F.M.: Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat.Protoc.1, 2253–2256 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ram A.F., Kapteyn J.C., Montijn R.C., Caro L.H., Douwes J.E., Baginsky W., Mazur P., Van Den Ende H., Klis F.M.: Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β-1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J.Bacteriol.180, 1418–1424 (1998).

    CAS  PubMed  Google Scholar 

  • Raška M., Běláková J., Krupka M., Weigl E.: Candidiasis — do we need to fight or to tolerate the Candida fungus? Folia Microbiol.52, 297–312 (2007).

    Article  Google Scholar 

  • Richard M., Ibata-ombetta S., Dromer F., Bordon-pallier F., Jouault T., Gaillardin C.: Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages. Mol.Microbiol.44, 841–853 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Sanglard D., Ischer F., Monod M., Bille J.: Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob.Agents Chemother.40, 2300–2305 (1996).

    CAS  PubMed  Google Scholar 

  • Thompson J.R., Register E., Curotto J., Kurtz M., Kelly R.: An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast14, 565–571 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Torosantucci A., Bromuro C., Chiani P., De Bernardis F., Berti F., Galli C., Norelli F., Bellucci C., Polonelli L., Costantino P., Rappuoli R., Cassone A.: A novel glyco-conjugate vaccine against fungal pathogens. J.Exp.Med.202, 597–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Vale-silva L.A., Buchta V., Valentová E.: Effect of subinhibitory concentration of some established and experimental antifungal compounds on the germ tube formation in Candida albicans. Folia Microbiol.52, 39–43 (2007).

    Article  CAS  Google Scholar 

  • Walther A., Wendland J.: An improved transformation protocol for the human fungal pathogen Candida albicans. Curr.Genet.42, 339–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wang S., Luo Y., Yi X., Yu W., Xu Z., Ma X., He J., Liu Q.: A highly efficient and highly reliable protocol for transformation of Escherichia coli by electroporation. J.Rapid Meth.Autom.Microbiol.15, 253–258 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu-Mei He or Di-Qing Luo.

Additional information

Zhu-Mei He and Jing Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, ZM., Chen, J., Li, HZ. et al. Mutants of Candida albicans hypersensitive to calcofluor white display susceptibility to antifungal drugs. Folia Microbiol 55, 159–166 (2010). https://doi.org/10.1007/s12223-010-0024-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0024-7

Keywords

Navigation