Skip to main content

Advertisement

Log in

Hydroxylated anthraquinones produced by Geosmithia species

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Geosmithia fungi are little known symbionts of bark beetles. Secondary metabolites of lilac colored species G. lavendula and other nine Geosmithia species were investigated in order to elucidate their possible role in the interactions of the fungi with environment. Hydroxylated anthraquinones (yellow, orange, and red pigments), were found to be the most abundant compounds produced into the medium during the submerged cultivation. Three main compounds were identified as 1,3,6,8-tetrahydroxyanthraquinone (1), rhodolamprometrin (1-acetyl-2,4,5,7-tetrahydroxyanthraquinone; 2), and 1-acetyl-2,4,5,7,8-pentahydroxyanthraquinone (3). Compounds 2 and 3 (representing the majority of produced metabolites) inhibited the growth of G+-bacteria Staphylococcus aureus and Bacillus subtilis with minimum inhibitory concentration of 64–512 μg/mL. Anti-inflammatory activity detected as inhibition of cyclooxygenase-2 was found only for compound 3 at 1 and 10 μg/mL. Compound 2 interfered with the morphology, compound 3 with cell-cycle dynamics of adherent mammalian cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AQ(s):

anthraquinone(s)

COX-1:

cyclooxygenase-1

COX-2:

cyclooxygenase-2

CZD:

Czapek-Dox (medium)

DAPI:

4′,6-diamidino-2-phenylindole

LOD:

limit of detection

LOQ:

limit of quantification

MEA:

malt extract (medium)

MIC(s):

minimal inhibitory concentration(s)

PBS:

phosphate-buffered saline

UPLC:

ultra-performance liquid chromatography

References

  • Avery M.L., Humphrey J.S., Decker D.G.: Feeding deterrence of anthraquinone, anthracene, and anthrone to rice-eating birds. J.Wild.Manag. 61, 1359–1365 (1997).

    Article  Google Scholar 

  • Avwioro O.G., Awoyemi F.A., Oduola T.: A novel natural collagen and muscle stain from Morinda lucida extracts. Internat.Med.J. 4, 44–48 (2005).

    Google Scholar 

  • Ayer W.A., Browne L.M., Lin G.: Metabolites of Leptographium wageneri, the causative agent of black stain root disease of conifers. J.Nat.Prod. 52, 119–129 (1989).

    Article  CAS  Google Scholar 

  • Berger Y.: 1,3,6,8-Tetrahydroxyanthraquinone from Aspergillus versicolor. Phytochemistry 19, 2779–2780 (1980).

    Article  CAS  Google Scholar 

  • Betina V., Sedmera P., Vokoun J., Podojil M.: Anthraquinone pigments from a conidiating mutant of Trichoderma viride. Experientia 42, 196–197 (1986).

    Article  CAS  Google Scholar 

  • Bruneton J.: Pharmacognosy, Phytochemistry, Medical Plants, 2nd ed. Intercept Ltd.-Lavoisier Publ., Paris 1999.

    Google Scholar 

  • Chrysayi-Tokousbalides M., Kastanias M.A.: Cynodontin: a fungal metabolite with antifungal properties. J.Agric.Food Chem. 51, 4920–4923 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Edwards H.G.M., Cockell C.S., Newton E.M., Wynn-Williams D.D.: Protective pigmentation in UVB-screened Antarctic lichens studied by Fourier transform Raman spectroscopy: an extremophile bioresponse to radiation stress. J.Raman Spectrosc. 35, 463–469 (2004).

    Article  CAS  Google Scholar 

  • Erdman T.R., Thomson R.H.: Naturally occurring quinones. Anthraquinones in crinoids Heteromera savignii and Lamprometra kluzingeri. J.Chem.Soc.Perkin Trans. I, 1291–1292 (1972).

    Article  Google Scholar 

  • Francesconi K.A.: Pigments of some echinoderms collected from Western Australian waters. Austral.J.Chem. 33, 2781–2784 (1980).

    CAS  Google Scholar 

  • Gálvez J., Gomez-Lechón M.J., García-Domenech R., Castell J.V.: New cytostatic agents obtained by molecular topology. Bioorg. Med.Chem.Lett. 6, 2301–2306 (1996).

    Article  Google Scholar 

  • Ganapaty S., Thomas P.S., Fotso S., Laatsch H.: Antitermitic quinones from Diospyros sylvatica. Phytochemistry 65, 1265–1271 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Gill M.: The biosynthesis of pigments in Basidiomycetes. Austral.J.Chem. 54, 721–734 (2001).

    Article  CAS  Google Scholar 

  • Haefner B.: Drugs from the deep: marine natural products as drug candidates. Drug Discov.Today 536–544 (2003).

  • Hatano T., Uebayashi H., Ito H., Shiota S., Tsuchiya T., Yoshida T.: Phenolic constituents of Cassia seeds and antibacterial effects of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem.Pharm.Bull. 47, 1121–1127 (1999).

    PubMed  CAS  Google Scholar 

  • Hauf S., Cole R.W., Laterra S., Zimmer C., Schnapp G., Walter R., Heckel A., Van Meel J., Rieder C.L., Peters J.M.: The small molecule hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J.Cell Biol. 161, 281–294 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Hilker M., Köpf A.: Evaluation of the palatability of chrysomelid larvae containing anthraquinones to birds. Oecologia 100, 421–429 (1994).

    Article  Google Scholar 

  • Hobson D.K., Wales D.S.: “Green” dyes. J.Soc.Dyers Colour. 114, 42–44 (1998).

    CAS  Google Scholar 

  • Ismail N.H., Ali A.M., Aimi N., Kitajima M., Takayama H., Lajia N.H.: Anthraquinone from Morinda elliptica. Phytochemistry 45, 1723–1725 (1997).

    Article  CAS  Google Scholar 

  • Izhaki I.: Emodin — a secondary metabolite with multiple ecological functions in higher plants. New Phytol. 155, 205–217 (2002).

    Article  CAS  Google Scholar 

  • Jadulco R., Brauers G., Edrada R.A., Ebel R., Wray V., Sudarsono, Proksch P.: New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J.Nat.Prod. 65, 730–733 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kolařík M., Kostovčík M., Pažoutová S.: Host range and diversity of the genus Geosmithia (Ascomycota:Hypocreales) living in association with bark beetles in the Mediterranean area. Mycol.Res. 111, 1298–1310 (2007).

    Article  PubMed  Google Scholar 

  • Kolařík M., Kubátová A., Hulcr J., Pažoutová S.: Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe. Microb.Ecol. 55, 65–80 (2008).

    Article  PubMed  Google Scholar 

  • Lad L., Luo L., Carson J.D., Wood K.W., Hartman J.J., Copeland R.A., Sakowicz R.: Mechanism of inhibition of human KSP by ispinesib. Biochemistry 47, 3576–3585 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Mathey A.P., Spitellera P., Steglicha W.: Draculone, a new anthraquinone pigment from the tropical lichen Melanotheca cruenta. Z.Naturforsch. 57, 565–567 (2002).

    CAS  Google Scholar 

  • Mayer T.U., Kapoor T.M., Haggarty S.J., King R.W., Schreiber S.L., Mitchison T.J.: Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Müller K.: Current status and recent developments in anthracenone antipsoriatics. Curr.Pharm.Design 6, 901–918 (2000).

    Article  Google Scholar 

  • Noreen Y., Ringbom T., Perera P., Danielson H., Bohlin L.: Development of a radiochemical cyclooxygenase-1 and -2 in vitro assay for identification of natural products as inhibitors of prostaglandin biosynthesis. J.Nat.Prod. 61, 2–7 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Pankewitz F., Hilker M.: Defensive components in insect eggs: are anthraquinones produced during egg development? J.Chem.Ecol. 32, 2067–2072 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Rath G.M., Ndonzao M., Hostettmann K.: Antifungal anthraquinones from Morinda lucida. Internat.J.Pharmacogn. 33, 107–114 (1995).

    Article  CAS  Google Scholar 

  • Rideout J.A., Sutherland M.D.: Pigments of marine animals. XV. Bianthrones and related polyketides from Lamprometra palmata gyges and other species of crinoids. Austral.J.Chem. 38, 793–808 (1985).

    CAS  Google Scholar 

  • Schinazi R.F., Chu C.K., Babu J.R., Oswald B.J., Saalmann V., Cannon D.L., Eriksson B.F.H., Nasr M.: Anthraquinones as a new class of antiviral agents against human immunodeficiency virus. Antiviral Res. 13, 265–272 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Semple S.J., Pyke S.M., Reynolds G.D., Flower R.L.P.: In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral Res. 49, 169–178 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Sittie A.A., Lemmich E., Olsen C.E., Hviid L., Kharazmi A., Nkrumah F.K., Christensen S.B.: Structure-activity studies: in vitro antileishmanial and antimalarial activities of anthraquinones from Morinda lucida. Planta Med. 65, 259–261 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Six D.L.: Bark beetle-fungus symbiosis, pp. 99–116 in K. Bourtzis, T.A. Miller (Eds): Insect Symbiosis. CRC Press, Baton Rouge (FL, USA) 2003.

    Google Scholar 

  • Takahashi D., Maoka T., Tsushima M., Fujitani K., Kozuka M., Matsuno T., Shingu T.: New quinone sulfates from the crinoids Tropiometra afra macrodiscus and Oxycomanthus japonicus. Chem.Pharm.Bull. 50, 1609–1612 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Thomson R.H.: Naturally Occurring Quinones. IV. Recent Advances. Blackie Academic and Professional, New York 1997.

    Google Scholar 

  • Tripathi Y.S., Sharma M., Manickam M.: Rubiadin, a new antioxidant from Rubia cordifolia. Indian J.Biochem.Biophys. 34, 302–306 (1997).

    PubMed  CAS  Google Scholar 

  • Wijeratne E.M.K., Turbyville T.J., Fritz A., Whitesell L., Gunatilaka A.A.L.: A new dihydroxanthenone from a plant-associated strain of the fungus Chaetomium globosum demonstrates anticancer activity. Bioorgan.Med.Chem. 14, 7917–7923 (2006).

    Article  CAS  Google Scholar 

  • Younos C., Rolland A., Fleurentin J., Lanhers M., Misslin R., Martier F.: Analgetic and behavioral effects of Morinda citrofolia. Planta Med. 56, 430–434 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Flieger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stodůlková, E., Kolařík, M., Křesinová, Z. et al. Hydroxylated anthraquinones produced by Geosmithia species. Folia Microbiol 54, 179–187 (2009). https://doi.org/10.1007/s12223-009-0028-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0028-3

Keywords

Navigation