Skip to main content
Log in

Role of the bacteriophage λ exo-xis region in the virus development

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Various processes of bacteriophage λ development in Escherichia coli cells bearing either the whole λ exo-xis region (with truncated, thus nonfunctional, exo and xis genes) or particular genes from this region were investigated. The presence of either the exo-xis region or the ea8.5 gene on a plasmid resulted in formation of fuzzy plaques by infecting phage. Both efficiency of plating and efficiency of lysogenization were decreased in such hosts. On the other hand, neither the efficiency of adsorption nor intracellular lytic development of the infecting phage (measured in one-step-growth experiments) was affected while significantly more host cells survived the infection, when containing the exo-xis region. Although no effects of the exo-xis region on the activity of the p L promoter was detected, this region contributed to a decreased transcription from the cII-stimulated promoters p I, p aQ and p E. These results, together with the results of measurement of efficiency of plating of phages bearing mutations in cI, cII and cIII genes on hosts containing the exo-xis region, strongly suggest that genes from this region (especially ea8.5) are involved in the regulation of bacteriophage λ development at the stage of the lysis-vs.-lysogenization decision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BP λ:

bacteriophage λ

LB:

Luria-Bertani

PFU:

plaque-forming units

e.x.r.:

exo-xis region

m.o.i.:

multiplicity of infection

References

  • Altuvia S., Oppenheim A.B.: Translational regulatory signals within the coding region of the bacteriophage λ cIII gene. J.Bacteriol. 167, 415–419 (1986).

    PubMed  CAS  Google Scholar 

  • Arber W., Enquist L., Hohn B., Murray N.E., Murray K.: Experimental methods for use with λ, pp. 433–466 in R.W. Hendrix, J.W. Roberts, F.W. Stahl, R.A. Weisberg (Eds): Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (New York) 1983.

    Google Scholar 

  • Astrachan L., Miller J.F.: Regulation of λ rex expression after infection of Escherichia coli K by λ bacteriophage. J.Virol. 9, 510–518 (1972).

    PubMed  CAS  Google Scholar 

  • Bolivar F., Backman K.: Plasmids of Escherichia coli as cloning vectors. Meth.Enzymol. 68, 245–267 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Casadaban M.J., Cohen S.N.: Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J.Mol.Biol. 138, 179–207 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Friedman D., Court D.L.: Bacteriophage λ: alive and well and still doing its thing. Curr.Opin.Microbiol. 4, 201–207 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Gabig M., Obuchowski M., Ciesielska A., Latała B., Węgrzyn A., Thomas M.S., Węgrzyn G.: The Escherichia coli RNA polymerase α subunit and transcriptional activation by bacteriophage λ cII protein. Acta Biochim.Pol. 45, 271–280 (1998).

    PubMed  CAS  Google Scholar 

  • Goldberg A.R., Howe M.: New mutations in the S cistron of bacteriophage λ affecting host cell lysis. Virology 38, 200–202 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Griffo G., Oppenheim A.B., Gottesman M.E.: Repression of the λ p cin promoter by integrative host factor. J.Mol.Biol. 209, 55–64 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Jensen K.F.: The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J.Bacteriol. 175, 3401–3407 (1993).

    PubMed  CAS  Google Scholar 

  • Jones M.O., Herskowitz I.: Mutants of bacteriophage λ which do not require the cIII gene for efficient lysogenization. Virology 88, 199–212 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Kędzierska B., Glinkowska M., Iwanicki A., Obuchowski M., Sojka P., Thomas M.S., Węgrzyn G.: Toxicity of the bacteriophage λ cII gene product to Escherichia coli arises from inhibition of host cell DNA replication. Virology 313, 622–628 (2003).

    Article  PubMed  Google Scholar 

  • Kourilsky P., Knapp A.: Lysogenization by bacteriophage λ. III. Multiplicity dependent phenomena occurring upon infection by λ. Biochimie 56, 1517–1523 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Latała B., Obuchowski M., Węgrzyn G.: Bacteriophage λ cIII gene product has an additional function apart from inhibition of cII degradation. Virus Genes 22, 127–132 (2001).

    Article  PubMed  Google Scholar 

  • Łoś M., Golec P., Łoś J.M., Węglewska-Jurkiewicz A., Czyż A., Węgrzyn A., Węgrzyn G., Neubauer P.: Effective inhibition of lytic development of bacteriophages λ, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol. 7, 13 (2007).

    Article  PubMed  Google Scholar 

  • Miller J.H.: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (New York) 1972.

    Google Scholar 

  • Obuchowski M., Giladi H., Koby S., Szalewska-Pałasz A., Węgrzyn A., Oppenheim A.B., Thomas M.S., Węgrzyn G.: Impaired lysogenisation of the Escherichia coli rpoA341 mutant by bacteriophage λ is due to the inability of cII to act as a transcriptional activator. Mol.Gen.Genet. 254, 304–311 (1997a).

    Article  PubMed  CAS  Google Scholar 

  • Obuchowski M., Węgrzyn A., Szalewska-Pałasz A., Thomas M.S., Węgrzyn G.: An RNA polymerase α subunit mutant impairs N-dependent transcriptional antitermination in Escherichia coli. Mol.Microbiol. 23, 211–222 (1997b).

    Article  PubMed  CAS  Google Scholar 

  • Reece K.S., Phillips G.J.: New plasmids carrying antibiotic-resistance cassettes. Gene 165, 141–142 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Sergueev K., Court D., Reaves L., Austin S.: E. coli cell-cycle regulation by bacteriophage λ. J.Mol.Biol. 324, 297–307 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Słomińska M., Neubauer P., Węgrzyn G.: Regulation of bacteriophage λ development by guanosine 5′-diphosphate-3′-diphosphate. Virology 262, 431–441 (1999).

    Article  PubMed  Google Scholar 

  • Słomińska M., Konopa G., Ostrowska J., Kędzierska B., Węgrzyn G., Węgrzyn A.: SeqA-mediated stimulation of a promoter activity by facilitating functions of a transcription activator. Mol.Microbiol. 47, 1669–1679 (2003).

    Article  PubMed  Google Scholar 

  • Węgrzyn G., Węgrzyn A.: Genetic switches during bacteriophage λ development. Prog.Nucl.Acids Res.Mol.Biol. 79, 1–48 (2005).

    Article  Google Scholar 

  • Węgrzyn G., Glass R.E., Thomas M.S.: Involvement of the Escherichia coli RNA polymerase α subunit in transcriptional activation by the bacteriophage λ CI and CII proteins. Gene 122, 1–7 (1992).

    Article  PubMed  Google Scholar 

  • Węgrzyn G., Węgrzyn A., Konieczny I., Bielawski K., Konopa G., Obuchowski M., Helinski D.R., Taylor K.: Involvement of the host initiator function dnaA in the replication of coliphage λ. Genetics 139, 1469–1481 (1995).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Węgrzyn.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łoś, J.M., Łoś, M., Węgrzyn, A. et al. Role of the bacteriophage λ exo-xis region in the virus development. Folia Microbiol 53, 443–450 (2008). https://doi.org/10.1007/s12223-008-0068-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0068-0

Keywords

Navigation