Skip to main content
Log in

Biodegradation of methyl tert-butyl ether using bacterial strains

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Prospective methyl tert-butyl ether (MTBE) degrading bacterial strains and/or consortia were identified. The potential for aerobic degradation of MTBE was examined using bacterial isolates from contaminated soils and groundwater. Using the 16S rDNA protocol, two isolates capable of degrading MTBE (Rhodococcus pyridinivorans 4A and Achromobacter xylosoxidans 6A) were identified. The most efficient consortium of microorganisms was acquired from contaminated groundwater. The growth of both strains and the consortium on MTBE was supported by various organic substrates, and monitored using Bioscreen®. The biochemical oxygen demand of the cultures was measured using OxiTop®, and their MTBE concentrations were estimated by gas chromatography. After 3 weeks of aerobic cultivation using n-alkanes as cosubstrate, the concentration of MTBE in R. pyridinivorans 4A was reduced to 62.4 % of its initial amount (50 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

µ:

specific growth rate

LB:

Luria-Bertani medium

AA:

casamino acids

MTBE:

methyl tert-butyl ether

AL:

mixture of aliphatic alkanes C6–16

Nem:

a consortium (see text)

BOD:

biochemical oxygen demand

T :

generation time

FID:

flame ionization detector

TBA:

tert-butyl alcohol

GC:

gas chromatography

YE:

yeast extract

LA:

lactic acid

References

  • Deeb R.A., Hu H.Y., Hanson J.R., Scow K.M., Alvarez-Cohen L.: Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ.Sci.Technol. 35, 312–317 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Fayolle F., François A., Garnier L., Godefroy D., Mathis H., Piveteau P., Monot F.: Limitations in MTBE biodegradation. Oil & Gas Sci.Technol. — Rev. IFP 58, 497–504 (2003).

    Article  CAS  Google Scholar 

  • Ferreira N.L., Malandain C., Fayolle-Guichard F.: Enzymes and genes involved in the aerobic biodegradation of methyl tertbutyl ether (MTBE). Appl.Microbiol.Biotechnol. 72, 252–262 (2006).

    Article  CAS  Google Scholar 

  • Fortin N.Y., Morales M., Nakagawa Y., Focht D.D., Deshusses M.A.: Methyl tert-butyl ether (MTBE) degradation by a microbial consortium. Environ.Microbiol. 3, 407–416 (2001).

    Article  PubMed  CAS  Google Scholar 

  • François A., Garnier L., Mathis H., Fayolle F., Monot F.: Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl.Microbiol.Biotechnol. 62,256–262 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Hatzinger P.B., Mcclay K., Vainberg S., Tugusheva M., Condee C.W., Steffan R.J.: Biodegradation of methyl tert-butyl ether by a pure bacterial culture. Appl.Environ.Microbiol. 67, 5601–5607 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Johnson R., Pankow J., Bender D., Price C., Zogorski J.S.: MTBE — to what extent will past releases contaminate community supply wells? Environ.Sci.Technol. 34, 210–217 (2000).

    Article  Google Scholar 

  • Káš J., Burkhard J., Demnerová K., Košťál J., Macek T., Macková M., Pazlarová J.: Perspectives in biodegradation of alkanes and PCBs. Pure Appl.Chem. 69, 2357–2369 (1997).

    Article  Google Scholar 

  • Keller A., Fromes J., Koshland C., Reuter J., Suffer I., Last J.: Health and environmental assessment of MTBE. Report to the Governor and Legislature of the State of California as Sponsored by SB521, Vol. 1. Summary and Recommendations 1998.

  • Košťál J., Suchánek M., Klierová H., Králová B., Demnerová K., Mcbeth D.: Pseudomonas C12B, SDS degrading strain, harbors a plasmid coding for degradation of medium chain length n-alkanes. Internat.Biodeteriorat.Biodegrad. 42, 221–228 (1998).

    Article  Google Scholar 

  • Mo K., Lora C.O., Wanken A.E., Javanmardian M., Yang N., Kulpa C.F.: Biodegradation of ethyl tert-butyl ether by pure bacterial cultures. Appl.Microbiol.Biotechnol. 47, 69–72 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Salanitro J.P., Diaz L.A., Williams M.P., Wisniewski H.L.: Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl. Environ.Microbiol. 60, 2593–2596 (1994).

    PubMed  CAS  Google Scholar 

  • Stocking A.J., Deeb R.A., Flores A.E., Stringfellow W., Talley J., Brownell R., Kavanaugh M.C.: Bioremediation of MTBE: a review from a practical perspective. Biodegradation 11, 187–201 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Streger S.H., Vainberg S., Dong H., Hatzinger P.B.: Enhancing transport of Hydrogenophaga flava of aquifers contaminated with methyl tert-butyl ether. Appl.Environ.Microbiol. 68, 5571–5579 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Vošahlíková M.: Evaluation of methyl tert-butyl ether (MTBE) toxicity and study of MTBE degradation by chosen bacterial strains. PhD Thesis. Institute of Chemical Technology, Prague 2006.

    Google Scholar 

  • Vošahlíková M., Cajthaml T., Demnerová K., Pazlarová J.: Effect of methyl tert-butyl ether in standard tests for mutagenicity and environmental toxicity. Environ.Toxicol. 21, 599–605 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pazlarová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vošahlíková-Kolářová, M., Krejčík, Z., Cajthaml, T. et al. Biodegradation of methyl tert-butyl ether using bacterial strains. Folia Microbiol 53, 411–416 (2008). https://doi.org/10.1007/s12223-008-0062-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0062-6

Keywords

Navigation