Beneficial health effects of milk and fermented dairy products — Review

Abstract

Milk is a complex physiological liquid that simultaneously provides nutrients and bioactive components that facilitate the successful postnatal adaptation of the newborn infant by stimulating cellular growth and digestive maturation, the establishment of symbiotic microflora, and the development of gut-associated lymphoid tissues. The number, the potency, and the importance of bioactive compounds in milk and especially in fermented milk products are probably greater than previously thought. They include certain vitamins, specific proteins, bioactive peptides, oligosaccharides, organic (including fatty) acids. Some of them are normal milk components, others emerge during digestive or fermentation processes. Fermented dairy products and probiotic bacteria decrease the absorption of cholesterol. Whey proteins, medium-chain fatty acids and in particular calcium and other minerals may contribute to the beneficial effect of dairy food on body fat and body mass. There has been growing evidence of the role that dairy proteins play in the regulation of satiety, food intake and obesity-related metabolic disorders. Milk proteins, peptides, probiotic lactic acid bacteria, calcium and other minerals can significantly reduce blood pressure. Milk fat contains a number of components having functional properties. Sphingolipids and their active metabolites may exert antimicrobial effects either directly or upon digestion.

This is a preview of subscription content, log in to check access.

Abbreviations

AA:

arachidonic acid

LA:

lactalbumin

ACE:

angiotensin I-converting enzyme

LCPUFA:

long-chain oligounsaturated fatty acid(s)

CLA:

conjugated linoleic acid

LDL:

low-density lipoprotein

DHA:

docosahexaenoic acid

LG:

lactoglobulin

EGF:

epidermal growth factor

MCP:

monocyte chemotactic protein

EPA:

eicosapentaenic acid

M-CSF:

macrophage colony-stimulating factor

FA(s):

fatty acid(s)

MCT:

medium-chain triglycerides

FFA(s):

free fatty acid(s)

MFGM:

milk fat globule membrane

GALT:

gut-associated lymphoid tissue

MIP:

macrophage inflammatory protein

G-CSF:

granulocyte colony-stimulating factor

NGF:

nerve growth factor

GIT:

gastrointestinal tract

NK:

natural killer

HAMLET:

human α-lactalbumin made lethal to tumor cells

sIgA:

secretory immunoglobulin A

HDL:

high-density lipoprotein

RANTES:

Regulated upon Activated Normal T-Expressed and presumably Secreted chemokine

IFN:

interferon

Ig:

immunoglobulin

TGF:

transforming growth factor

IGF:

insulin-like growth factor

TLR:

Toll-like receptor

IL:

interleukin

TNF:

tumor necrosis factor

References

  1. Agerholm-Larsen L., Raben A., Haulrik N., Hansen A.S., Manders M., Astrup A.: Effects of 8 weeks intake of probiotic milk products on risk factors for cardiovascular diseases. Eur.J.Clin. Nutr.54, 288–297 (2000).

    PubMed  CAS  Article  Google Scholar 

  2. Aimutis W.R.: Bioactive properties of milk proteins with particular focus on anticariogenesis. J.Nutr.134, 989S–995S (2004).

    PubMed  CAS  Google Scholar 

  3. Alférez M.J.M., Barrionuevo M., López Aliagua I., Sans Sampelayo M.R., Lisbona F., Campos M.S.: The digestive utilization of goat and cow milk fat in malabsorption syndrome. J.Dairy Sci.68, 451–461 (2001).

    Google Scholar 

  4. Armogida S.A., Yannaras N.M., Melton A.L., Srivastava M.D.: Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc.25, 297–304 (2004).

    PubMed  CAS  Google Scholar 

  5. Babayan V.K.: Medium chain length fatty acids esters and their medical and nutritional applications. J.Am.Oil Chem.Soc.59, 49A–52A (1981).

    Article  Google Scholar 

  6. Beaulieu J., Dupont C., Lemieux P.: Whey proteins and peptides: beneficial effects on immune health. Therapy3, 69–78 (2006).

    CAS  Article  Google Scholar 

  7. Bellamy W.R., Yamauchi K., Wakabayashi H., Takase M., Shimamura S., Tomita M.: Antifungal properties of lactoferricin, a peptide derived from the N-terminal region of bovine lactoferrin. Lett.Appl.Microbol.18, 230–233 (1994).

    CAS  Article  Google Scholar 

  8. Bergendi Ľ., Beneš L., Ďuračková Z., Ferenčík M.: Chemistry, physiology and pathology of free radicals. Life Sci.65, 1865–1874 (1999).

    PubMed  CAS  Article  Google Scholar 

  9. Bertolami M.C., Faludi A.A., Batlouni M.: Evolution of the effects of a new fermented milk product (Gaio) on primary hypercholesterolemia. Eur.J.Clin. Nutr.53, 97–101 (1999).

    PubMed  CAS  Article  Google Scholar 

  10. Biancone L., Monteleone I., Blanco G.D., Vavassori P., Pallone F.: Resident bacterial flora and immune system. Digest.Liver Dis.34, 537–543 (2002).

    Article  Google Scholar 

  11. Böttcher M.F., Jenmalm M.C., Björkstén B.: Cytokine, chemokine and secretory IgA level in human milk in relation to atopic disease and IgA production in infants. Pediatr.Allergy Immunol.14, 35–41 (2003).

    PubMed  Article  Google Scholar 

  12. Bounous G., Gold P.: The biological activity of undenatured dietary whey proteins: role of glutathione. Clin.Invest.Med.14, 296–309 (1991).

    PubMed  CAS  Google Scholar 

  13. Brandsch M., Brust P., Neubert K., Ermisch A.: β-Casomorphins — chemical signals of intestinal transport systems, pp. 207–219 in V. Brantl, H. Teschemacher (Eds): β-Casomorphins and Related Peptides: Recent Developments. VCH, Weinheim (Germany) 1994.

    Google Scholar 

  14. Brody E.P.: Biological activities of bovine glycomacropeptide. Brit.J.Nutr.84(Suppl. 1), S39–S46 (2000).

    PubMed  CAS  Google Scholar 

  15. Brown E.M.: Interaction of β-lactoglobulin and α-lactalbumin with lipids: a review. J.Dairy Sci.67, 713–722 (1984).

    CAS  Google Scholar 

  16. Calligaris S., Manzocco L., Anese M., Nicoli M.C.: Effect of heat-treatment on the antioxidant and peroxidant activity of milk. Internat.Dairy J.14, 421–427 (2004).

    CAS  Article  Google Scholar 

  17. Cho Y., Batt C.A., Sawyer L.: Probing the retinol-binding site of bovine β-lactoglobulin. J.Biol.Chem.269, 1102–1107 (1994).

    Google Scholar 

  18. Clancy R.: Immunobiotics and the probiotic evolution. FEMS Immunol.Med.Microb.38, 9–12 (2003).

    CAS  Article  Google Scholar 

  19. Clare D.A., Swaisgood H.E.: Bioactive milk peptides: a prospectus. J.Dairy Sci.83, 1187–1195 (2000).

    PubMed  CAS  Google Scholar 

  20. De Lorgelil M., Renaud S., Mamelle N., Salen P., Martin J.L., Monjaud I., Guidollet J., Touboul P., Delaye J.: Mediterranean α-linoleic acid rich in secondary prevention of coronary heart disease. Lancet343, 1454–1459 (1994).

    Article  Google Scholar 

  21. De Witt J.N., van Hooydonk A.C.M.: Structure, function and applications of lactoperoxidase in natural antimicrobial systems. Netherlands Milk Dairy J.50, 227–244 (1996).

    Google Scholar 

  22. Dhiman T.R., Nam S.-H.N., Ure A.L.: Factors affecting conjugated linoleic acid content in milk and meat. Crit.Rev.Food Sci.Nutr.45, 463–482 (2005).

    PubMed  CAS  Article  Google Scholar 

  23. Donovan S.M.: Role of human milk components in gastrointestinal development: current knowledge and future needs. J.Pediatr.149(Suppl. 1), S49–S61 (2006).

    CAS  Google Scholar 

  24. Dunshea F.R., Ostrowska E., Ferrari J.M., Gill H.S.: Dairy proteins and the regulation of satiety and obesity. Austral.J.Exper. Agric.47, 1051–1058 (2007).

    CAS  Article  Google Scholar 

  25. Elfstrand L., Mansson H.L., Paulssson M., Hyberg L., Akisson B.: Immunoglobulins, growth factors and growth hormone in bovine colostrum and effects of processing. Internat.Dairy J.12, 879–887 (2002).

    CAS  Article  Google Scholar 

  26. Farnworth E.R.: Kefir — a complex probiotic. Food Sci.Technol.Bull.2, 1–17 (2005).

    Google Scholar 

  27. Fell J.M., Paintin M., Arnaud-Battandier F., Beattie R.M., Hollis A., Kitching P., Donnet Hughes A., Macdonald T.T., Walker Smith J.A: Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in pediatric Crohn’s disease. Aliment.Pharmacol.Ther.14, 281–289 (2000).

    PubMed  CAS  Article  Google Scholar 

  28. Ferenčík M., Ebringer L.: Probiotics, allergy and asthma. (In Slovak) Alergie5, 224–230 (2003)

    Google Scholar 

  29. Field C.J.: The immunological components of human milk and their effect on immune development in infants. J.Nutr.135, 2–4 (2005).

    Google Scholar 

  30. Filipčík P., Cente M., Ferenčík M., Hulín I., Novák M.: The role of oxidative stress in the pathogenesis of Alzheimer’s disease. Bratisl.Med.J.107, 384–394 (2006).

    Google Scholar 

  31. Fitzgerald R.K., Murray B.A.: Bioactive peptides and lactic farmentations. Internat.J.Dairy Technol.59, 118–125 (2006).

    CAS  Article  Google Scholar 

  32. Forssén K.M., Jägerstadt M.I., Wigertz K., Witthoft C.N.: Folates and dairy products: a critical update. J.Am.Coll.Nutr.19, 100S–110S (2000).

    PubMed  Google Scholar 

  33. Fox P.F.: Indigenous enzymes in milk, pp. 447–467 in P.F. Fox, P.L.H. Sweeney (Eds): Advanced Dairy Chemistry, Vol. 1, Proteins. Kluwer Academic-Plenum Publishers, New York 2003.

    Google Scholar 

  34. Friel J.K., Martin S.M., Langdon M., Herzberg G.R., Buettner G.R.: Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr.Res.52, 612–618 (2002).

    Article  Google Scholar 

  35. Galdeano C.M., Perdigon G.: The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin.Vacc.Immunol.13, 219–226 (2006).

    CAS  Article  Google Scholar 

  36. Garcia Unciti M.: Therapeutic utility of the medium-chain triglycerides. Ketogenic diets in infantile epilepsy. (In Italian) Nutr.Clin.16, 7–35 (1996).

    Google Scholar 

  37. Garofalo R.P., Goldman A.S.: Cytokines, chemokines, and colony-stimulating factors in human milk: the 1997 update. Neonatology74, 134–142 (1998).

    CAS  Article  Google Scholar 

  38. German J.B.: Butyric acid — a role in cancer prevention. Nutr.Bull.24, 293–299 (1999).

    Article  Google Scholar 

  39. German J.B., Dillard C.J.: Saturated fats: what dietary intake? Am.J.Clin.Nutr.80, 550–559 (2004).

    PubMed  CAS  Google Scholar 

  40. German J.B., Dillard C.J.: Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit.Rev.Food Sci.Nutr.46, 57–92 (2006).

    PubMed  CAS  Article  Google Scholar 

  41. Gibson G.R., Probert H.M., Van Los J., Rastall R.A., Roberfroid M.B.: Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr.Res.Rev.17, 259–275 (2004).

    CAS  Article  PubMed  Google Scholar 

  42. Gill H.S., Guarner F.: Probiotics and human health: a clinical perspective. Postgrad.Med.J.80, 516–526 (2004).

    PubMed  CAS  Article  Google Scholar 

  43. Gilliland S.E., Nelson C.R., Maxwell C.: Assimilation of cholesterol by Lactobacillus acidophilus. Appl.Environ.Microbiol.49, 377–381 (1985).

    PubMed  CAS  Google Scholar 

  44. Grappin R., Beuvier E.: Possible implications of milk pasteurization on the manufacture and sensory quality of ripened cheese. Internat.Dairy J.7, 751–761 (1997).

    Article  Google Scholar 

  45. Grundy S.M.: Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am.J.Clin.Nutr.60, 986S–990S (1994).

    PubMed  CAS  Google Scholar 

  46. Guarner F., Schaafsma G.J.: Probiotics. Internat.J.Food Microbiol.39, 237–238 (1998).

    CAS  Article  Google Scholar 

  47. Gustafsson L., Biers C., Hallgren O., Mossberg A.K., Pettersson J., Fischer W., Aronsson A., Svanborg C.: HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy. J.Nutr.135, 1299–1303 (2005).

    PubMed  CAS  Google Scholar 

  48. Hachelaf W., Boukrelda M., Coquin P., Desjeux J.F., Boudraa G., Touhami M.: Digestibility of goat milk fat in children with a digestive origin malnutrition. (In French) Lait73, 593–599 (1993).

    Article  Google Scholar 

  49. Halliwell B., Gutteridge M.C.: Free Radicals in Biology and Medicine, 2nd ed. Clarendon Press, Oxford (UK) 1989.

    Google Scholar 

  50. Harrison R.: Structure and function of xanthin oxidoreductase: where we are now? Free Rad.Biol.Med.33, 774–797 (2002).

    PubMed  CAS  Article  Google Scholar 

  51. Hartmann R., Meisel H.: Food-derived peptides with biological activity: from research to food applications. Curr.Opin.Biotechnol.18, 163–169 (2007).

    PubMed  CAS  Article  Google Scholar 

  52. Haug A., Høstmark A.T., Harstad O.M.: Bovine milk in human nutrition — a review. Lipids Health Dis.6, 25 (2007).

    PubMed  Article  CAS  Google Scholar 

  53. Hayashida K., Kaneko T., Takeuchi T., Shimizu H., Ando K., Harada E.: Oral administration of lactoferrin inhibits inflammation and nociception in rat adjuvant-induced arthritis. J.Vet.Med.Sci.66, 149–154 (2004).

    PubMed  CAS  Article  Google Scholar 

  54. Hernández-Ledesma B., Amigo L., Recio I., Bartolomé B.: ACE-inhibitory and radical-scavenging activity of peptides derived from β-lactoglobulin f (19–25). Interactions with ascorbic acid. J.Agric.Food Chem.55, 3392–3397 (2007).

    PubMed  Article  CAS  Google Scholar 

  55. Huth P.J., Dirienzo D.B., Miller G.D.: Major specific advances with dairy foods in nutrition and health. J.Dairy Sci.89, 1207–1221 (2006).

    PubMed  CAS  Google Scholar 

  56. Iigo M., Kuhara T., Ushida Y., Sekine K., Moore M.A., Tsuda H.: Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin.Exp.Metastasis17, 35–40 (1999).

    PubMed  CAS  Article  Google Scholar 

  57. Isaacs C.E.: Human milk inactivates pathogen individually, additively, and synergistically. J.Nutr.135, 1286–1288 (2005).

    PubMed  CAS  Google Scholar 

  58. Isawa M., Kaito M., Ikoma J.: Lactoferrin inhibits hepatitis C virus in chronic hepatitis C patients with high viral loads and HVC genotype 1b. Am.J.Gastroent.97, 766–767 (2002).

    Article  Google Scholar 

  59. Isolauri E., Sutas Y., Kankaapää P., Arvilommi H., Salminen S.: Probiotics: effect on immunity. Am.J.Clin.Nutr.73(Suppl.) 444S–450S (2001).

    PubMed  CAS  Google Scholar 

  60. Jaziri M., Migliore-Samour D., Casablanca-Pigred M.R., Keddat K., Morgat J.L., Jolles P.: Specific binding sites on human phagocytic blood cells for Gly-Leu-Phe and Val-Glu-Pro-Ile-Pro-Tyr, immunostimulatory peptides from human milk proteins. Biochim.Biophys.Acta1160, 251–261 (1992).

    PubMed  CAS  Google Scholar 

  61. Jenssen H.: Anti-herpes simplex virus activity of lactoferrin/lactoferricin — an example of antiviral activity of antimicrobial protein/peptide. Cell.Mol.Life Sci.24, 3302–3313 (2005).

    Google Scholar 

  62. Kaito M., Iwasa M., Fujita N., Kobayashi Y., Kojima Y., Ikoma J., Imoto I., Adachi Y., Hamano H., Yamauchi K.: Effect of lactoferrin inpatients with chronic hepatitis C: combination therapy with interferon and ribavirin. J.Gastroent.Hepatol.22, 1984–1997 (2007).

    Google Scholar 

  63. Kaizu H., Sasaki M., Nakajima H.: Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J.Dairy Sci.46, 2493–2499 (1993).

    Article  Google Scholar 

  64. Kang S.H., Kim J.U., Imm J.Y., Oh S., Kim S.H.: The effects of dairy processes and storage on insulin-like growth factor-1 (IGF-1) content in milk and in model fortified dairy product. J.Dairy Sci.89, 402–409 (2006).

    PubMed  CAS  Google Scholar 

  65. Kepler C.R., Tove S.B.: Biohydrogenation of unsaturated fatty acids. J.Biol.Chem.242, 5682–5686 (1967).

    Google Scholar 

  66. Khanal R.C., Olson K.C.: Factors affecting conjugated linoleic acid (CLA) content in milk, meat, and egg: a review. Pakistan J.Nutr.3, 82–98 (2004).

    Google Scholar 

  67. Kiesling G., Schneider J., Jahreis G.: Long-term consumption of fermented dairy products over 6-months increases HDL cholesterol. Eur.J.Clin.Nutr.56, 843–849 (2002).

    Article  CAS  Google Scholar 

  68. Kitts D.D., Yuan Y.V.: Caseinophosphopeptides and calcium bioavailability. Trends Food Sci.Technol.3, 31–35 (1992).

    CAS  Article  Google Scholar 

  69. Koppová I., Lukáš F., Kopečný J.: Effect of fatty acids on growth of conjugated-linoleic-acids-producing bacteria in rumen. Folia Microbiol.51, 291–293 (2006).

    Article  Google Scholar 

  70. Korhonen H., Pihlanto A.: Bioactive peptides: production and functionality. Internat.Dairy J.16, 945–960 (2006).

    CAS  Article  Google Scholar 

  71. Kullisaar T., Songisepp E., Mikelsaar M., Zilmer K., Vihalemm T., Zilmer M.: Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Brit.J.Nutr.90, 449–456 (2003).

    PubMed  CAS  Article  Google Scholar 

  72. Kverka M., Buriánová J., Lodinová-Žádníková R., Kocourková I., Cinová J. Tučková L., Tlaskalová-Hogenová H.: Cytokine profiling in human colostrum and milk by protein array. Clin.Chem.53, 955–962 (2007).

    PubMed  CAS  Article  Google Scholar 

  73. Lahov E., Regelson W.: Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem.Toxicol.34, 131–145 (1996).

    PubMed  CAS  Article  Google Scholar 

  74. Lerebours E., N’Djitoyap Ndam C., Lavoine A., Hellot M., Antoine J.M., Collin R.: YOGHURT and fermented-then-pasteurized milk: effects of short-term and long-term ingestion on lactose absorption and mucosal lactase activity in lactase-deficient subjects. Am.J.Clin.Nutr.49, 823–827 (1989).

    PubMed  CAS  Google Scholar 

  75. Ling M.Y., Yen C.L.: Antioxidative ability of lactic acid bacteria. J.Agric.Food Chem.47, 1460–1466 (1999).

    Article  Google Scholar 

  76. Liu Q., Raina A., Smith M., Sayre L., Perry G.: Hydroxynonenal, toxic carbonyls, and Alzheimer disease. Molec.Aspects Med.24, 305–313 (2003).

    Article  CAS  Google Scholar 

  77. Ljungh A., Lan J., Yanagisawa N.: Isolation, selection and characteristics of Lactobacillus paracasei subsp. paracasei F16. Microb. Health Dis.3(Suppl.), 4–6 (2002).

    Article  Google Scholar 

  78. Luhovyy B.L., Akhavan T., Anderson G.H.: Whey proteins in the regulation of food intake and satiety. J.Am.Coll.Nutr.26, 704S–712S (2007).

    PubMed  CAS  Google Scholar 

  79. Macfarlane S., Macfarlane G.T., Cummings J.H.: Review article: prebiotics in the gastrointestinal tract. Aliment.Pharmacol. Therap.24, 701–714 (2006).

    CAS  Article  Google Scholar 

  80. Machnicki M., Zimecki M., Zagulski T.: Lactoferrin regulates the release of tumor necrosis factor-α and interleukin-6 in vivo. Internat. J.Exp.Pathol.74, 433–439 (1993).

    CAS  Google Scholar 

  81. Macrae J., O’Reilly L., Morgan P.: Desirable characteristics of animal products from a human health perspectives. Livestock Prod.Sci.94, 95–103 (2005).

    Article  Google Scholar 

  82. Maga E.A., Anderson G.B., Culler J.S., Smith W., Murray J.D.: Antimicrobial properties of human lysozyme transgenic mouse milk. J.Food Protect.62, 51–56 (1998).

    Google Scholar 

  83. Malkoski M., Daspher S.G., O’Brien-Simpson N.M., Talbo G.H., Macris M., Cross K.J., Reynolds E.C.: Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob.Agents Chemother.45, 2309–2315 (2001).

    PubMed  CAS  Article  Google Scholar 

  84. Markus C.R., Olivier B., de Haan E.H.: Whey protein rich in α-lactalbumin increases the ration of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am.J.Clin.Nutr.75, 1051–1056 (2002).

    PubMed  CAS  Google Scholar 

  85. Matar C., Valdez J.C., Medina M., Rachid M., Perdigon G.: Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J.Dairy Res.68, 601–609 (2001).

    PubMed  CAS  Article  Google Scholar 

  86. McCann K.B., Shiell B.J., Michalski W.P., Lee A., Wan J., Roginski H., Coventry M.J.: Isolation and characterization of a novel antibacterial peptide from bovine αS1-casein. Internat.Dairy J.16, 316–323 (2006).

    CAS  Article  Google Scholar 

  87. Mehra R., Marnila P., Korhonen M.: Milk immunoglobulins for health promotion. Internat.Dairy J.16, 1262–1272 (2006).

    CAS  Article  Google Scholar 

  88. Meisel H.: Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers43, 118–128 (1997).

    Article  Google Scholar 

  89. Meisel H.: Bioactive peptides from milk proteins: a perspective for consumers and producers. Austral.J.Dairy Technol.56, 83–92 (2001).

    CAS  Google Scholar 

  90. Meisel H.: Biochemical properties of peptides encrypted in bovine milk proteins. Curr.Med.Chem.12, 1905–1919 (2005).

    PubMed  CAS  Article  Google Scholar 

  91. Meisel H., Bockelmann W.: Bioactive peptides encrypted in milk proteins: proteolytic activation and tropho-functional properties. Anthonie van Leeuwenhoek76, 207–216 (1999).

    CAS  Article  Google Scholar 

  92. Mensink R.P., Katan M.B.: Effect of dietary fatty acids on serum lipids and lipoproteins: a meta-analysis of 27 trials. Artherioscl. Thromb.12, 911–919 (1992).

    CAS  Google Scholar 

  93. Mensink R.P., Zock P.L., Kester A.D., Atan M.B.: Effects of dietary fatty acids and carbohydrates on the ration of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am.J.Clin.Nutr.77, 1146–1155 (2003).

    PubMed  CAS  Google Scholar 

  94. Meydani S.N., Ha W.-K.: Immunologic effects of yoghurt. Am.J.Clin.Nutr.71, 861–872 (2000).

    PubMed  CAS  Google Scholar 

  95. Mezzaroba L.F.H., Carvalho J.E., Ponezi A.N., Antonio M.A., Monteiro K.M., Possenti A., Sgarbieri V.C.: Antiulcerative pro-perties of bovine α-lactalbumin. Internat.Dairy J.16, 1005–1112 (2006).

    CAS  Article  Google Scholar 

  96. Mikeš Z., Ferenčík M., Jahnová E., Ebringer L., Čižnár I.: Hypocholesterolemic and immunostimulatory efects of orally applied Enterococcus faecium M-74 in man. Folia Microbiol.40, 639–646 (1995).

    Article  Google Scholar 

  97. Mikeš Z., Ebringer L., Boča M., Dušinský R., Jahnová E.: Some risk factors for cardiovascular diseases in using traditional Slovak sheep cheese: results of a pilot study. (In Slovak) Geriatria1, 29–36 (2005).

    Google Scholar 

  98. Mistry N., Drobni P., Nasland J., Sunkari V.G., Jenssen H., Evander M.: The antipapillomavirus activity of human and bovine lactoferricin. Antivir.Res.75, 258–265 (2007).

    PubMed  CAS  Article  Google Scholar 

  99. Miyauchi H., Hashimoto S., Nakajima M., Shinoda I., Fukuwatari Y., Hayasawa H.: Bovine lactoferrin stimulates the phagocytic activity of human neutrophils: identification of its active domain. Cell.Immunol.187, 34–37 (1998).

    PubMed  CAS  Article  Google Scholar 

  100. Mizushima S., Ohshige K., Watanabe J., Kimura M., Kadowaki T., Nakamura Y., Tochikubo O., Ueshima H.: Randomized controlled trial of sour milk and blood pressure in borderline hypertensive men. Am.J.Hypertens.17, 701–706 (2004).

    PubMed  Article  Google Scholar 

  101. Montagne P.M., Tregoat V.S., Cuilliere M.L., Bene M.C., Taure G.C.: Measurement of nine human milk proteins by nephelometric immunoasssays: application to the determination of nature milk protein profile. Clin.Biochem.33, 181–186 (2000).

    PubMed  CAS  Article  Google Scholar 

  102. Morgan F., Bodin J.-P., Gaborit P.: Link between goat milk lipolysis and sensorial quality of lactic goat cheeses made from raw or pasteurized milk. Lait81, 743–746 (2001).

    CAS  Article  Google Scholar 

  103. Morrow A.L., Ruiz-Palacios G.M., Jiang X., Newburg D.S.: Human-milk glycans inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J.Nutr.135, 1304–1307 (2005).

    PubMed  CAS  Google Scholar 

  104. Nagaoka S., Futamura Y., Miwa K., Awano T., Yamauchi K., Kanamaru Y., Tadashi K., Kuwata T.: Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin. Biochem.Biophys.Res.Commun.281, 11–17 (2001).

    PubMed  CAS  Article  Google Scholar 

  105. Newburg D.S.: Innate immunity and human milk. J.Nutr.135, 1308–1312 (2005).

    PubMed  CAS  Google Scholar 

  106. Newburg D.S., Ruiz-Palacios G.M., Morrow A.L.: Human milk glycans protect infants against enteric pathogens. Ann.Rev.Nutr.25, 37–58 (2005).

    CAS  Article  Google Scholar 

  107. Newburg D.S., Walker W.A.: Protection of the neonate by the innate immune system of developing gut and of human milk. Pediat.Res.62, 2–8 (2007).

    Article  CAS  Google Scholar 

  108. Ochoa J.J., Farguharson A.J., Grant I., Moffat M.E., Heys S.D., Wahle K.W.: Conjugated linoleic acid (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis 9, trans 11 and trans 10, cis 12 isomers. Carcinogenesis25, 1185–1191 (2004).

    PubMed  CAS  Article  Google Scholar 

  109. Odriozola-Serrano I., Bendicho-Porta S., Martin-Belloso O.: Comparative study on shelf life of whole milk processed by high-intensity pulsed electric field or heat treatment. J.Dairy Sci.89, 905–911 (2006).

    PubMed  CAS  Google Scholar 

  110. Parodi P.W.: Cow’s milk folate binding protein: its role in folate nutrition. Austral.J.Dairy Technol.52, 109–118 (1997).

    CAS  Google Scholar 

  111. Parodi P.W.: Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. J.Dairy Sci.82, 1339–1349 (1999).

    PubMed  CAS  Google Scholar 

  112. Parodi P.W.: Milk in human nutrition. Austral.J.Dairy Technol.59, 3–59 (2004).

    CAS  Google Scholar 

  113. Paulin Y., Pouliot Y., Lamiot E., Aattouri N., Gauthier S.F.: Safety and efficacy of a milk-derived extract in the treatment of plaque psoriasis: an open label study. J.Cutan.Med.Surg.9, 271–275 (2005).

    Article  Google Scholar 

  114. Pecquet S., Bovetto L., Maynard F., Fritsche R.: Peptides obtained by tryptic hydrolysis of bovine β-lactoglobulin induce specific oral tolerance in mice. J.Allergy Clin.Immunol.105, 514–521 (2000).

    PubMed  CAS  Article  Google Scholar 

  115. Pellegrini A.: Antimicrobial peptides from food proteins. Curr.Pharmaceut.Design9, 1225–1238 (2003).

    CAS  Article  Google Scholar 

  116. Pereira D., Gibson G.R.: Cholesterol assimilation by lactic acid bacteria and bifidobacteria. Appl.Environ.Microbiol.68, 4689–4693 (2002).

    PubMed  CAS  Article  Google Scholar 

  117. Pihlanto-Leppälä A., Koskinen P., Piilola K., Tupasela T., Korhonen H.: Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J.Dairy Res.67, 53–64 (2000).

    PubMed  Article  Google Scholar 

  118. Pinnock C.B., Arney W.K.: The milk-mucus believe: sensory analysis comparing cow’s milk and a soy placebo. Appetite20, 61–67 (1993).

    PubMed  CAS  Article  Google Scholar 

  119. Pinnock C.B., Graham N.M., Mylvaganam A., Douglas R.M.: Relationship between intake and mucus production in adult volunteers challenged with rhinovirus-2. Am.Rev.Resp.Dis.141, 352–356 (1990).

    PubMed  CAS  Google Scholar 

  120. Possemiers S., Van Camp J., Bolca S., Verstraete W.: Characterization of the bactericidal effect of dietary sphingosine and its activity under intestinal conditions. Internat.J.Food Microbiol.105, 59–70 (2005).

    CAS  Article  Google Scholar 

  121. Pouliot Y., Gauthier S.F.: Milk growth factors as health products: some technological aspects. Internat.Dairy J.16, 1415–1420 (2006).

    CAS  Article  Google Scholar 

  122. Prased S., Dhiman R.K., Duseja A., Chawla Y.K., Sharma A., Agarwal R.: Lactulose improves cognitive functions and healthrelated quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology45, 549–559 (2007).

    Article  Google Scholar 

  123. Rachid M., Matar C., Duarte J., Perdigon G.: Effect of milk fermented with a Lactobacillus helveticus R389(+) proteolytic strain on the immune system and on the growth of 471 breast cancer cells in mice. FEMS Immunol.Med.Microbiol.47, 242–253 (2006).

    PubMed  CAS  Article  Google Scholar 

  124. Rainer L., Heiss C.J.: Conjugated linoleic acid: health implications and effects on body composition. J.Am.Diet.Assoc.104, 963–968 (2004).

    PubMed  CAS  Article  Google Scholar 

  125. Razafindrakoto O., Revelomanana N., Rasolofo A., Rakotoarimanana R.D., Bourque P., Coquin P., Briend A., Desjeux J.F.: May goat milk replace cow milk in undernourished children? (In French) Lait73, 601–611 (1993).

    Article  Google Scholar 

  126. Reiter B., Perraudin J.P.: Lactoperoxidase, biological functions, pp. 144–180 in J. Everse, K.F. Everse, B. Brisham (Eds): Peroxidases in Chemistry and Biology, Vol. II. CRC Press, Boca Raton (USA) (1991).

    Google Scholar 

  127. Reynolds E.C.: Anticariogenic casein phosphopeptides. Prot.Peptides Lett.6, 253–303 (1999).

    Google Scholar 

  128. Riollet C., Rainard P., Poutrel B.: Cell subpopulation and cytokine expression in cow milk in response to chronic Staphylococcus aureus infection. J.Dairy Sci.84, 1077–1084 (2001).

    PubMed  CAS  Google Scholar 

  129. Santosa S., Farnworth E., Jones P.J.: Probiotics and their potential health claims. Nutr.Rev.64, 265–274 (2006).

    PubMed  Article  Google Scholar 

  130. Sanz Sampelayo M.R., Chilliard Y., Schmidely P., Boza J.: Influence of type of diet on the fat constituents of goat and sheep milk. Small Rumen Res.68, 42–63 (2007).

    Article  Google Scholar 

  131. Schanbacher F.L., Talhouk R.S., Murray F.A.: Biology and origin of bioactive peptides in milk. Liv.Prod.Sci.50, 105–123 (1997).

    Article  Google Scholar 

  132. Schrezenmeir J., de Vrese M.: Probiotics, prebiotics, and synbiotics — approaching and definition. Am.J.Clin.Nutr.73(Suppl.), 361S–364S (2001).

    PubMed  CAS  Google Scholar 

  133. Schuster G.S., Dirksen T.R., Ciarlonw A.E., Burnett G.W., Reynolds M.T., Lankford M.T.: Anticaries and antiplaque potential of free fatty acids in vitro and in vivo. Pharmacol.Ther.Dent.5, 25–33 (1980).

    PubMed  CAS  Google Scholar 

  134. Seppo L., Jauhiainen T., Poussa T., Korpela R.: A fermented milk high in bioactive peptides has a blood pressure-lowering effect in ypertensive subjects. Am.J.Clin.Nutr.77, 326–330 (2003).

    PubMed  CAS  Google Scholar 

  135. Seifu E., Buys E.M., Donkin E.F.: Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends Food Sci.Technol.16, 137–154 (2005).

    CAS  Article  Google Scholar 

  136. Silva S.V., Malcata F.X.: Caseins as source of bioactive peptides. Internat.Dairy J.15, 1–15 (2005).

    CAS  Article  Google Scholar 

  137. Sipola M., Finckenberg P., Korpela R., Vapaatolo H., Nurminen M.-L.: Effect of long-term intake of milk products on blood pressure in hypertensive rats. J.Dairy Res.69, 103–111 (2002).

    PubMed  CAS  Article  Google Scholar 

  138. Smithers G.W.: Isolation of growth factors from whey tiand their application in food and biotechnology industries — a brief review, pp. 16–19 in Bull. No. 389, Advances in Fractionation and Separation Processes for Novel Dairy Applications. Internat. Dairy Federation, Brussels 2004.

    Google Scholar 

  139. Songisepp E., Kullisaar T., Hutt P., Elias P., Brilene T., Zilmer M., Mikelsaar M.: A new probiotic cheese with antioxidative and antimicrobial activity. J.Dairy Sci.87, 2013–2017 (2004).

    Google Scholar 

  140. Songisepp E., Kals J., Kullisaar T., Mändar R., Hutt P., Zilmer M., Mikelsaar M.: Evolution of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr.J.4, 22–31 (2005).

    PubMed  Article  CAS  Google Scholar 

  141. Sprong R.C., Hulstein M.F., van der Meer R.: High intake of milk fat inhibits intestinal colonization of Listeria but not of Salmonella in rats. J.Nutr.129, 1382–1389 (1999).

    PubMed  CAS  Google Scholar 

  142. Sun C.Q., O’Connor C.J., Roberton A.M.: The antimicrobial properties of milk fat after partial hydrolysis by calf pregastric lipase. Chem.Biol.Interact.140, 185–198 (2002).

    PubMed  CAS  Article  Google Scholar 

  143. Svensson M., Hakansson A., Mossberg A.K., Linse C., Svanborg C.: Conversion of α-lactoglobulin to a protein inducing apoptosis. Proc.Nat.Acad.Sci.USA97, 4221–4226 (2000).

    PubMed  CAS  Article  Google Scholar 

  144. Tahri K., Grill J.P., Schneider F.: Bifidobacteria strains’ behavior toward cholesterol coprecipitation with bile salts assimilation. Curr.Microbiol.3, 187–193 (1996).

    Article  Google Scholar 

  145. Taylor M.J., Richardson T.: Antioxiodant activity of skim milk: effect of heat and resultant sulfhydryl groups. J.Dairy Sci.63, 1783–1795 (1980).

    CAS  Google Scholar 

  146. Teschemacher H., Brantl V.: Milk proteins derived atypical opioid peptides and related compounds with opioid antagonist activity pp. 3–17 in V. Brantl, T. Teschemacher (Eds): β-Casomorphins and Related Peptides: Recent Developments. VCH Publishers, Weinheim (Germany) 1994.

    Google Scholar 

  147. Thormar H., Isaacs E.E., Kim K.S., Brown H.R.: Interaction of visna virus and other enveloped viruses by free fatty acids and monoglycerides. Ann.N.Y.Acad.Sci.724, 465–471 (1994).

    PubMed  CAS  Article  Google Scholar 

  148. Thormar H., Hilmarsson H.: The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem.Phys.Lipids150, 1–11 (2007).

    PubMed  CAS  Article  Google Scholar 

  149. Toba Y., Takada Y., Matsuoka Y., Morita Y., Motouri M., Hirai T., Suguri T., Aoe S., Kawakami H., Kumegawa M., Takeuchi A., Itabashi A.: Milk basic protein promotes bone formation and suppresses bone resorption in healthy adult men. Biosci.Biotechnol.Biochem.65, 1353–1357 (2001).

    PubMed  CAS  Article  Google Scholar 

  150. Trebichavský I., Šplíchal I.: Probiotics manipulate host cytokine response and induce antimicrobial peptides. Folia Microbiol.51, 507–510 (2006).

    Article  Google Scholar 

  151. Tricon S., Burdge G.C., Kew S., Banerjee T., Russel J.J., Jones E.L., Grimble R.F., Williams C.M., Yaqoob P., Calder P.C.: Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am.J. Clin.Nutr.80, 614–620 (2004).

    PubMed  CAS  Google Scholar 

  152. Tsopmo A., Friel J.K.: Human milk has anti-oxidant properties to protect premature infants. Curr.Pediatr.Rev.3, 45–51 (2007).

    CAS  Article  Google Scholar 

  153. Ustundag D., Yilmaz E., Dogan Y., Akarsu S., Canatan H., Halifeoglu I., Cikim G., Aygun A.D.: Levels of cytokines (IL-1β, IL-2, IL-6, IL-8, TNF-α) and trace elements (Zn, Cu) in breast milk from mothers of preterm and term infants. Mediat. Inflamm.6, 331–336 (2005).

    Article  CAS  Google Scholar 

  154. Van der Meer R., Bovee-Oudenhoven I.M.J., Sesink A.L.A., Kleibeuker J.H.: Milk products and intestinal health. Internat.Dairy J.8, 163–170 (1998).

    Article  Google Scholar 

  155. Vegarud G.E., Langsrud T., Svenning C.: Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. Brit.J.Nutr.84, S91–S98 (2000).

    PubMed  CAS  Article  Google Scholar 

  156. Vesper H., Schelma E., Nikolova-Karakashion M.N., Dillehay D.L., Lynch D.V., Mercill A.H.: Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J.Nutr.129, 1239–1249 (1999).

    PubMed  CAS  Google Scholar 

  157. Walker G., Cai F., Shen P., Reynolds C., Ward B., Fone C., Honda S., Koganei M., Oda M., Reynolds E.: Increased remineralization of tooth enamel by milk containing added casein phosphopeptide-amorphous calcium phosphate. J.Dairy Res.73, 74–78 (2006).

    PubMed  CAS  Article  Google Scholar 

  158. Wang Q., Allen J.C., Swaisgood H.E.: Binding of vitamin D and cholesterol to β-lactoglobulin. J.Dairy Sci.80, 1054–1059 (1997).

    PubMed  CAS  Article  Google Scholar 

  159. Wang W.P., Iigo M., Sato J., Sekine K., Adachi I., Tsuda H.: Activation of intestinal mucosal immunity in tumor-bearing mice by lactoferrin. Japan.J.Cancer Res.91, 1022–1027 (2000).

    CAS  Google Scholar 

  160. Weinberg E.D.: Antibiotic properties and applications of lactoferrin. Curr.Pharmaceut.Design13, 801–811 (2007).

    CAS  Article  Google Scholar 

  161. Welsh J.K., May J.T.: Anti-infective properties of breast-milk. J.Pediatr.94, 1–9 (1979).

    PubMed  CAS  Article  Google Scholar 

  162. Wijga A.H., Smit H.A., Kerkhof M., de Jongste J.C., Gerritsen J., Neijens H.J., Boshuizen H.C., Brunekreef B.: Association of consumption of product containing milk fat with reduced asthma risk in pre-school children: the PIAMA birth cohort study. Thorax58, 567–572 (2003).

    PubMed  CAS  Article  Google Scholar 

  163. Wuthrich B., Schmid A., Walther B., Sieber R.: Milk consumption does not lead to mucus production or occurrence of asthma. J.Am.Coll.Nutr.24, 547S–555S (2005).

    PubMed  Google Scholar 

  164. Yamauchi K., Wakabayashi H., Shin K., Takase M.: Bovine lactoferrin: benefits and mechanism of action against infections. Biochem. Cell Biol.84, 291–296 (2006).

    PubMed  CAS  Article  Google Scholar 

  165. Yoshida T., Owens G.K.: Molecular determinant of vascular smooth muscle diversity. Circul.Res.96, 280–291 (2005).

    CAS  Article  Google Scholar 

  166. Yoshikawa M., Tani F., Chiba H.: Structure-activity relationship of opioid antagonist peptides derived from milk proteins, pp. 473–476 in T. Schiba (Ed.): Peptide Chemistry. Protein Research Foundation, Osaka (Japan) 1998.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Ebringer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ebringer, L., Ferenčík, M. & Krajčovič, J. Beneficial health effects of milk and fermented dairy products — Review . Folia Microbiol 53, 378–394 (2008). https://doi.org/10.1007/s12223-008-0059-1

Download citation

Keywords

  • Conjugated Linoleic Acid
  • Human Milk
  • Whey Protein
  • Milk Protein
  • Probiotic Bacterium